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Abstract

We describe the first definite fossil of the water scavenger beetle subfamily Enochrinae (Coleoptera: Hydrophilidae): Cymbiodyta 
samueli sp. n. from the Eocene Baltic amber from the Lithuanian coast. The new species is extremely similar and likely closely re-
lated to the only European species, C. marginella and confirms the European occurrence of the genus since the Eocene. A reanalysis 
of the historical biogeography of the genus, including the fossil taxon, revealed a wide Euro-American distribution of the ancestor of 
all modern species of the genus, corresponding to the position of landmasses and existing land connections between North America 
and Europe in the Late Cretaceous. The biogeographic reconstructions and the fossil both suggest that European Cymbiodyta is an 
ancient relict lineage which used to be more diverse in the past but survived until today in a single species C. marginella.
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1. Introduction

Beetles (Coleoptera) are among the most diverse and 
well-known insect groups, inhabiting our planet for c. 
300 million years. Recent studies helped us to reconstruct 
their evolutionary history (Zhang et al. 2018, McKenna et 
al. 2019, Boudinot et al. 2022), past diversity (e.g., Zhao 
et al. 2021) and the timing and reasons of radiations of 

beetle subgroups (e.g., Mckenna et al. 2015, Robertson 
et al. 2015, Lü et al. 2020, Baca et al. 2021) in unprece-
dented detail. Dozens of fossils discovered or reexamined 
every year complement molecular-based evolutionary 
reconstructions, providing a direct view of the diversi-
ty in the past (e.g., Li et al. 2021, 2022, Schädel et al. 
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2022, Yin et al. 2022) and testing DNA-based estimates. 
In contrast, surprisingly little is known about the origins 
and past diversity of most beetle families, subfamilies, or 
genera: these studies receive much less attention than the 
questions about early beetle evolution.

Water scavenger beetles (Hydrophilidae) represent a 
lineage with a comparatively well-studied evolutionary 
history. The multigene phylogeny by Short & Fikáček 
(2013) uncovered the relationships among main lineages 
and most of the genera. Subsequent studies have clarified 
and refined phylogenetic relationships and evolutionary 
histories of particular subclades (Toussaint et al. 2016, 
Toussaint and Short 2018, Arriaga-Varela et al. 2021a, 
Short et al. 2021) and continue to add details about bi-
ology, systematics and diversity of particular clades 
(e.g., Minoshima et al. 2018, Seidel et al. 2020, Girón 
and Short 2021). Hypotheses on the timing of the evolu-
tion of the Hydrophilidae have also been proposed and 
explored (Bloom et al. 2014, Toussaint and Short 2018) 
but the number of fossils documenting the past diversity 
remains limited. Most Mesozoic and Cenozoic fossils of 
the family are preserved as compressions (e.g., Fikáček 
et al. 2010b, 2010a, 2014, 2017, Fikáček and Schmied 
2013). Amber inclusions are very rare, representing only 
five species from Cretaceous Burmese amber (Fikáček 
et al. 2017), Eocene Baltic amber (Arriaga-Varela et al. 
2021b) and Miocene Dominican amber (Fikáček and En-
gel 2011). Fossils are known for most aquatic subfam-
ilies, with Enochrinae not yet confirmed with certainty 
since the Early Cretaceous Alegorius may represent ei-
ther Enochrinae or Acidocerinae (Fikáček et al. 2014). 
No fossils are known for the largely terrestrial Cylominae 
and Sphaeridiinae.

The subfamily Enochrinae comprises 286 described 
species in four genera, Cymbiodyta (33 spp.), Notionotus 
(25 spp.), Enochrus (225 spp.) and Enochrella (3 spp.), 
inhabiting various types of standing waters or seepage 
habitats (Fikáček 2019). Although frequently collected, 
the species diversity remains underexplored. Many spe-
cies remain to be discovered or their status need to be 
clarified, especially in worldwide Enochrus that seems to 
be a ‘waste basket’ at the moment. The worldwide fau-
na was only revised in detail for the genus Cymbiodyta 
distributed in three widely disjunct areas of the northern 
hemisphere: North America (29 species), western Pa-
laearctic (one species) and SE Asia (three species) (Smet-
ana 1974, Jia and Short 2010, Jia and Lin 2015, Toussaint 
and Short 2019). Toussaint and Short (2019) revealed the 
ancient (Mesozoic) origin of the genus, with the Europe-
an C. marginella having diverged from all remaining spe-
cies in the Late Cretaceous. SE Asian species were found 
deeply nested among the American ones, being a result of 
an Oligocene colonization of Asia from America. They 
estimated the American origin of Cymbiodyta.

In this study, we present the discovery of the first 
known fossil of the subfamily Enochrinae preserved as 
an inclusion in Baltic amber from Lithuania. The species 
seems to be closely related to the only modern European 
Cymbiodyta species, confirming the ancient presence of 
the genus in Europe, as predicted by the molecular time 

tree of Toussaint and Short (2019). To test the impact of 
the fossil, we rerun the biogeographic analyses and up-
date our idea about ancient distribution and evolutionary 
history of the genus.

2. Material and Methods

2.1. Morphological study 

The fossil was originally found in a larger piece of Bal-
tic amber and uneasy to examine. We polished the am-
ber piece to a smaller one with 600 and 1200 grit wet 
sandpapers, to make detailed examination possible. After 
polishing, the specimen was examined using Olympus 
SZ61 binocular microscope under various light regimes 
both in dry and wet condition (submerged in glycerine). 
Photographs were taken using a Canon 850D camera atta-
ched to the binocular microscope by an AmScope adap-
ter. Photographs were stacked from a series of original 
photos with different focus using Helicon Focus soft-
ware; all photographs, including those not shown here, 
are available at the Zenodo archive under doi https://doi.
org/10.5281/zenodo.7803930. Drawings are based on 
the photographs and were prepared in Clip Studio Paint 
software using a Wacom One graphical tablet. Morpho-
logical terminology follows Fikáček (2019), classificati-
on follows Short and Fikáček (2013). Comparison with 
modern specimens is based on material deposited in the 
Department of Entomology, National Museum, Prague. 
SEM micrographs of these specimens were taken using 
Hitachi S-3700N environmental electron microscope at 
the Department of Paleontology, National Museum (Pra-
gue, Czech Republic), using uncoated specimens in the 
low vacuum mode.

2.2  Biogeographic analysis

To reveal the impact of the fossil described in this study on 
the reconstruction of the ancestral distribution of the most 
recent common ancestor of Cymbiodyta, we performed a 
series of historical biogeography analyses. We used the 
dated phylogeny of Cymbiodyta published by Toussaint 
and Short (2019) into which we added the fossil species 
as a sister taxon to the European C. marginella, following 
the close relationship of the fossil and this species reve-
aled by morphology. Since the timing of the divergence 
between C. marginella and the fossil remains unknown, 
we generated four trees corresponding to four alternative 
scenarios tested, the age of their MRCA being 38 mya, 
50 mya, 70 mya or 90 mya, i.e., arbitrarily selected va-
lues ranging from the age slightly predating the yougest 
estimate for the Baltic amber age (34–48 mya, Seyfullah 
et al. 2018) to the age only slightly postdating the split 
of the European lineage of Cymbiodyta (96 mya, Tou-
ssaint and Short 2019). The distribution of the modern 
species and the fossil was coded as three areas: Europe 
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(EU), North America (NA) and southern Asia (AS). The 
analyses were performed using BioGeoBEARS R pac-
kage (Matzke 2013), using the tree and the distribution 
as the only data. Three models (DEC, DIVALIKE and 
BAYAREALIKE) available in the package and their +j 
alternatives allowing for jump dispersal were compared; 
the reconstruction based on the best performing model 
is presented here. The likelihoods of the three areas and 
their combinations for all four alternative trees are com-
pared.

3. Systematics

Cymbiodyta samueli sp. nov.

http://zoobank.org/460FD170-057A-435D-A8FA-B993C-
6F0A084

Figs 1–2

Material examined. Holotype (deposited in the Natur-
historisches Museum Freiburg, Switzerland): 1 specimen 
in a polished piece of Baltic amber (9×6×4 mm). 

Type locality and age. Baltic amber, Lithuanian coast, 
34–48 Mya (Seyfullah et al. 2018).

Description. Body: Body size 3.7 mm, maximum width 
1.6 mm. Head dark-coloured both dorsally and ventra-
lly, without clear paler preocular patches. Pronotum dark 
coloured on disc, yellow along margins, pale coloration 
wide laterally, narrow anteriorly, and very narrow posteri-
orly. Elytra dark colored, with widely yellow lateral mar-
gin. Ventral surface of thorax and abdomen yellowish. 
Head appendages, antennae and legs yellowish (Figs 
1A–C). — Head (Figs 1D, G; 2A, C) with large eyes, 
slightly protruding laterally; interocular distance 3.6× the 
eye width in dorsal view. Frontoclypeal suture well deve-
loped. Clypeus with widely emarginate anterior margin. 
Dorsal punctation of clypeus and frons identical, mode-
rately coarse. Labrum transverse, slightly bisinuate on 
anterior margin. Mentum transversely subrectangular, 
with slightly protruding bisinuate anterior margin. Gu-
lar sutures clear, moderately widely separated. Labial 
palpi with three palpomeres, apical palpomere relatively 
long. Maxillary palpi not preserved. Antenna with 9 an-
tennomeres: long scapus, moderately long conical pedi-
cel, three minute antennomeres, a cup-like antennomere 
(cupule) and 3-segmented pubescent antennal club; third 
antennomere of the club the longest, ca. twice as long as 
previous two antennomeres each. — Thorax (Figs 1D; 
2A, D): Pronotum transverse, evenly convex, widening 
posteriad, posterolateral corners rounded; dorsal puncta-
tion fine, uniform. Prosternum with a transverse groove, 
without median carina. Mesoventrite with a large triangu-
lar projection at midwidth. Mesocoxal cavities transverse, 
contiguous. Metaventrite ca. 1.7× longer than mesoven-

trite. Metanepisterna relatively wide throughout. Elytra 
narrowing posteriad, with at least 8 longitudinal series of 
fine puctures and a short scutellary series; the series not 
impressed as striae. Sutural stria present, clearly distin-
ct in apical half of elytron. — Abdomen (Figs 1C; 2A, 
C) with five ventrites, ventrite 5 weakly emarginated at 
apex, with several stouter setae present (remaining setae 
of the series have been broken). — Legs (Figs 1E, F; 2F, 
G). Procoxae large, globular, meso- and metacoxae tran-
sverse. Profemora relatively shorter than meso- and me-
tafemora, femoral pubescence not visible. Tibiae slender, 
straight, with several series of spine-like setae, apically 
with a few longer stout apical spurs. Protarsi with 5 tar-
someres, meso-and metatarsi with 4 tarsomeres; all tarsi 
without swimming hairs, with fine pubescence ventrally. 
Claws uniform in size and shape, arcuate.

Genus assignment. Within the family Hydrophilidae, the 
5-4-4 tarsal formula is unique for the genus Cymbiodyta 
in the subfamily Enochrinae. The other characters pre-
served in the fossil correspond with modern species of 
the genus as well: clypeus widely emarginate anteriorly, 
antenna with 9 antennomeres, prosternum with a tran-
sverse ridge, elytron with a sutural stria, and abdominal 
apex with an emargination and stouter setae at the apex.

Differential diagnosis. Cymbiodyta samueli sp. nov. di-
ffers from both Asian Cymbiodyta and from most of the 
American species by the highly elevated triangular pro-
jection of the mesoventrite (the other species have a low 
transverse ridge in that position). Most species with large 
triangular mesoventral elevation (the American C. acu-
minata, C. leechi and C. vindicata) are, however larger in 
body size (3.6–5.3 mm) and with rather deeply emargina-
te abdominal ventrite 5. The American C. minima (Figs 
3B,G,H) resembles the fossil species much more, but its 
mesoventral projection is much lower. The European C. 
marginella (Figs 3A, C–F) is the most similar species to 
the fossil, but differs from C. samueli sp. nov. by dark 
brown to black ventral body surface (yellowish in C. sa-
mueli) and absence of elytral series of puctures (with fine 
elytral series in C. samueli).

Etymology. The last author originally purchased the pie-
ce of amber with this species as a gift for his son Samuel 
Rion, but agreed to provide the specimen for the study 
instead when it was identified as a species important for 
understanding the evolution of the Hydrophilidae. To 
compensate Samuel for not getting the piece of amber 
with this specimen, we dedicate the new species to him.

Historical biogeography. DIVALIKE was the best-
-performing model for analyses based on all four alter-
native time trees without the jump dispersal allowed, 
 DIVALIKE+j performed the best among models allow-
ing for jump dispersal. In all analyses (and under all three 
models), a wide North American and European distributi-
on was estimated for MRCA of Cymbiodyta, without any 
significant effect of the age of MRCA of C. marginella 
and C. samueli sp. nov. on the reconstruction and on the 
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likelihood of individual ancestral areas (see Table 1 for 
results obtained with best-performing models). The mo-
dels with and without jump dispersal differed in the es-
timate of the origin of Asian species: DIVALIKE model 
estimate a widespread (North American+Asian) ancestor, 
whereas DIVALIKE+j model revealed the long distance 
dispersal of the North American ancestor. The analyses 
without the fossil revealed 100% probability of the wide 
ancestral range under both DIVALIKE and DIVALIKE+j 
(= best performing models).

4. Discussion

4.1. The phylogenetic position of 
C. samueli

The external morphology of adult Cymbiodyta is very 
uniform, with only a few species being morphologica-
lly very distinct (e.g., C. bifida which was until recent-
ly classified as a separate genus Helocombus; Toussaint 
and Short 2019). Remaining species differ in the shape 

Figure 1. Photographs of Cymbiodyta samueli sp. n. in Baltic amber. A–C general habitus (A, dorsolateral; B, dorsal; C, ventral). 
D detail morphology of prosternum and mesoventrite, with the large triangular mesoventral projection (see arrow). E–F detail of 
metatarsi with 4 tarsomeres. G head in dorsal view, with emarginate clypeus. H abdominal ventrite V with shallow emargination 
(see arrow). I complete view of the amber piece after polishing.
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of the mesoventral projection, the presence or absence of 
elytral striae, the body size and coloration, the size and 
shape of the emargination on the abdominal apex, and in 
the morphology of male genitalia (Smetana 1974, Jia and 
Short 2010, Jia and Lin 2015). Moreover, the molecular 
phylogeny by Toussaint and Short (2019), albeit inclu-
ding only 13 of 33 known species, indicates that some of 
these characters originated multiple times independently. 
For example, the species with the large triangular meso-
ventral projection (i.e., part of the C. marginella group 
by Smetana 1974) form at least two clades: the European 
C. marginella is sister to all other Cymbiodyta, whereas 
C. vindicata (and hence very likely also the other larger-
-bodied American species with protruding mesoventrite: 
C. leechi and C. acuminata) are deeply nested among the 
American species.

Cymbiodyta samueli sp. nov. described here is un-
doubtedly very similar to two modern species: the Eu-
ropean C. marginella and the American C. minima. It 
corresponds with them by a small body size, the high 
mesoventral projection, the coloration, and the presence 
of the shallow emargination on abdominal apex. Of these 
two modern species, it seems to be closer to the European 
C. marginella in the shape of the mesoventral projection: 
this is highly elevated in C. marginella (Fig. 3E) and C. 
samueli (Figs 1D, 2D), but lowly elevated in C. minima 
(Fig. 3G). We hence consider the sister-position C. samu-
eli and C. marginella as the most probable, further corro-
borated by the European distribution of both species. Our 
biogeographic analyses follow this assumption. Cymbio-
dyta minima is widely distribured through northern USA 
and southern Canada (Smetana 1974), but not included 

in the molecular analysis of Toussaint and Short (2019). 
Based on the morphology, we cannot exclude that it is in 
fact the member of the the earliest diverging lineage of 
Cymbiodyta (together with C. marginella and C. samu-
eli sp. n.) but molecular data are needed to resolve this 
question.

4.2. Historical biogeograhy of Cymbio
dyta

Toussaint and Short (2019) reconstructed the historical 
biogeography of Cymbiodyta and revealed the American 
origin of the genus using the DEC model in Lagrange. 
In contrast, our re-analysis revealed wide ancestral range 
(North America + Europe) for MRCA of Cymbiodyta for 
all models compared, with DIVALIKE model fitting our 
data better than DEC in all cases. We argue that (1) the 
wider ancestral range corresponds better to data in hand, 
and (2) is congruent with the position of landmasses in 
the Late Cretaceous.

The narrower (North American) estimate of ancestral 
distribution of MRCA of Cymbiodyta by Toussaint and 
Short (2019) was likely caused by the inclusion of out-
group taxa (Notionotus liparus: South America, Enochrus 
testaceus: Palaearctic, E. ochraceus: North America). 
North America alone was not revealed as ancestral range 
in any of our analyses under any models or settings, with 
or without C. samueli sp. n. It is in fact suprising that 
the additional information about the lineage presence in 
Europe 38 mya changed the log-likelihoods only very 
slightly, without any effect on ancestral reconstructions. 

Figure 2. Cymbiodyta samueli sp. nov. from Baltic amber, drawings of characters. A ventral view; B dorsal view; C head in dorsal 
view; D mesoventrite (dotted line = reconstruction); E abdominal apex; F–G metatarsi.
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This indicates that under the models considered, only the 
inclusion of fossils contradicting the distribution of mo-
dern species affects the analysis significantly, but the in-
formation about historical occurrence in the same area is 
largely ignored. We expect that the effect may be larger in 
case of time-stratified analyses not performed here.

Our ancestral range of MRCA of Cymbiodyta se-
ems to be also congruent with other available data. The 
stem age of Cymbiodyta (Late Cretaceous: Albian) co-
rresponds to the time when eastern North America was 
situated very close to pieces of future Europe, with 
occassional land connections between eastern North 
America, Greenland and Scandinavia (DeGeer Bridge: 
Brikiatis 2014). The species with wide distribution 
across the area, with frequent gene flow during the ti-

mes of emergent land bridges, may have really existed, 
similar to the widespread aquatic beetle species today 
(e.g., Helophorus sibiricus reaching from Scandinavia 
to Far East, but also inhabiting northern North America: 
Fikáček et al. 2011). The North American origin of Cym-
biodyta proposed by Toussaint and Short (2019) cannot 
be fully excluded, but is not corresponding to the data 
available at the moment. A detailed molecular phylogeny 
of Enochrinae, revealing the sister group of Cymbiodyta 
and its modern distribution, will provide further data to 
reconstruct the origin of Cymbiodyta more reliably. The 
inclusion of Cymbiodyta minima into the molecular ana-
lyses may be also of interest, especially if it reveals its 
closer relationship to the European that to the American 
species; such a discovery would provide further support 

Figure 3. Modern Cymbiodyta species most similar to C. samueli sp. n. from Baltic amber. A, C–F Cymbiodyta marginella (Fa-
bricius, 1792) from Europe; B, G–H C. minima Notman, 1919 from northern USA and southern Canada. A–B, habitus (dorsal and 
dorsolateral view); C, metatarsus; D, prosternum; E, G, mesoventrite with mesoventral projection; F, H, abdominal apex.
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to the Euro-American rather than North American origin 
of the genus.

In any case, European Cymbiodyta is clearly an anci-
ent relict lineage. Current data indicate that it survived 
in Europe since the Late Cretaceous, and our new fossil 
brings direct evidence of its presence in the Eocene. The 
fact that C. samueli sp. nov. clearly differs from the Eu-
ropean species brings also evidence of a higher species 
diversity and subsequent extinction in Europe in the past. 
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Table 1. Summary of ancestral range reconstruction for MRCA of Cymbiodyta (relaive probabilities for widespread Euro-American 
ancestor (NA+EU), European ancestor (EU) and North American ancestor (NA). MRCA = age of MRCA of C. marginella and C. 
samueli sp. nov., no fossil indicates the analysis without C. samueli. Model = best-performing model. LogLn = log-likelihood of 
the data under the respective model.

MRCA (mya) Model NA+EU (%) EU (%) NA (%) logLn
no fossil DIVALIKE 100 0 0 –7.38
38 DIVALIKE 100 0 0 –7.38
50 DIVALIKE 100 0 0 –7.40
70 DIVALIKE 100 0 0 –7.43
90 DIVALIKE 100 0 0 –7.46
no fossil DIVALIKE+j 100 0 0 –5.34
38 DIVALIKE+j 92 4 4 –5.44
50 DIVALIKE+j 92 4 4 –5.44
70 DIVALIKE+j 92 4 4 –5.44
90 DIVALIKE+j 92 4 4 –5.44

Figure 4. Historical biogeography of Cymbiodyta. A dated phylogeny of Cymbiodyta adopted from Toussaint and Short (2019), 
with C. samueli sp. nov. added as a sister species to modern C. marginella, with four alternative ages of their MRCA used for 
biogeographic analyses. B historical biogeography of Cymbiodyta following the DIVALIKE model in BioGeoBEARS (dotted 
rectangles show nodes for which the ancestral reconstruction diferred in DIVALIKE+j analysis). C, positions of the continents at 
the end of the Cretaceous (Albian) when European and American Cymbiodyta separated (NA, North America; SA, South America; 
E, Europe; AF, Africa; AS, Asia).
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