Phylogeny of the North American scorpion genus Diplocentrus Peters, 1861 (Scorpiones: Diplocentridae) based on morphology, nuclear and mitochondrial DNA

Carlos E. Santibáñez-López *, 1,2 , Oscar F. Francke ${ }^{2}$ \& Lorenzo Prendini ${ }^{3}$

${ }^{1}$ Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P. 04510, Coyoacán, Distrito Federal, Mexico; Carlos E. Santibáñez-López * [ironc81@hotmail.com] - ² Colección Nacional de Arácnidos, Instituto de Biología, Circuito exterior s / n, Ciudad Universitaria, Copilco, Coyoacán A.P. 70-233, Distrito Federal, C.P. 04510, Mexico - ${ }^{3}$ Scorpion Systematics Research Group, Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, U.S.A. - * Corresponding author

Accepted 14.viii. 2014
Published online at www.senckenberg.de/arthropod-systematics on 12.xii. 2014.

Abstract

The scorpion genus Diplocentrus Peters, 1861, endemic to North and Central America, is the most diverse in family Diplocentridae Karsch, 1880. There is considerable morphological variation among the species of Diplocentrus. It is necessary to test the monophyly and phylogenetic position of Diplocentrus in order to revise its diagnosis and taxonomic limits. The present contribution provides a phylogenetic analysis of 29 species of Diplocentrus, five exemplar species representing the three putatively most closely related diplocentrid genera, and an exemplar of a more distantly related diplocentrid genus. The analysis was based on 95 morphological characters and 4202 aligned nucleotides from DNA sequences of five markers in the nuclear and mitochondrial genomes. Separate and simultaneous parsimony analyses of the morphological and DNA sequence data were conducted with equal weighting and six implied weighting regimes. The nuclear and mitochondrial DNA datasets were also analyzed separately and simultaneously with Bayesian inference. The resulting topologies recovered the monophyly of Diplocentrus, with the exception of two neobothriotaxic species from central Mexico, for which a new genus Kolotl Santibáñez-López et al., 2014, is justified. The keyserlingii group, as previously defined, was not monophyletic due to the placement of two species in the mexicanus group; the rest of its component species were monophyletic, however. A third clade was recovered that has not been previously recognized: the zacatecanus group, comprising four species from northern Mexico and the southwestern U.S.A. New insights are provided concerning relationships among Diplocentrus and the diplocentrid genera Bioculus Stahnke, 1968 and Didymocentrus Kraepelin, 1905, the phylogenetic positions of which were previously ambiguous..

Key words

Diplocentridae, Diplocentrus, phylogeny, molecular data, morphology.

1. Introduction

The scorpion genus Diplocentrus Peters, 1861 is the most diverse in the family Diplocentridae Karsch, 1880. Since publication of the Catalog of Scorpions of the World (Sissom \& Fet 2000), the number of Diplocentrus species increased from 35 to 59 (SantibáÑez-López et al. 2013). Diplocentrus is endemic to North and Central America, ranging from the southwestern U.S.A. (Arizona, New Mexico and Texas) to northern Honduras (Sis-

SOM \& Fet 2000), but its greatest diversity (47 described species) and endemism occurs in mainland Mexico. Although most species of Diplocentrus are fossorial, these scorpions exhibit considerable morphological variation, from small species such as Diplocentrus bereai Armas \& Martín-Frías, 2004, with a total adult length of 2030 mm , to rather large species such as Diplocentrus taibeli (Caporiacco, 1938), total adult length, $80-90 \mathrm{~mm}$.

Hoffmann (1931) was the first to subdivide the morphological diversity within Diplocentrus into two species groups, the whitei group and the keyserlingii group, based largely on differences in size and coloration. Francke (1977) redefined these groups on morphometric criteria. The whitei group, renamed the mexicanus group because it included the type species of the genus, Diplocentrus mexicanus Peters, 1861, revalidated from synonymy with Diplocentrus whitei (Gervais, 1842), comprised species with short cheliceral fingers and the pedipalp femur wider than high. The keyserlingii group comprised species with long cheliceral fingers and the pedipalp femur higher than wide. Francke (1978) realized this distinction was problematic, because the diagnostic characters of the pedipalp femur were also used to separate other genera in subfamily Diplocentrinae Karsch, 1880. Additionally, one of the groups was by definition paraphyletic with respect to the other. Recently, SantibáÑez-López et al. (2013) presented an operational diagnosis for the keyserlingii group, but refrained from assuming it was monophyletic, pending further investigation of Diplocentrus phylogeny.

The monophyly and phylogenetic position of Diplocentrus has remained ambiguous since the first and, thus far, only published phylogenetic analysis of diplocentrid relationships, based on exemplar species included in a taxonomically broader analysis of scorpionoid phylogeny (Prendini 2000). Diplocentrus was rendered paraphyletic in most of the analyses, by two other diplocentrid genera, Bioculus Stahnke, 1968 and Didymocentrus Kraepelin, 1905, the validity of which had been disputed by several authors (Williams \& Lee 1975; Francke 1978; Sissom 1990; Stockwell 1992). Prendinis (2000) analyses suggested one or both genera should be synonymized with Diplocentrus, or the generic limits of Diplocentrus redefined, to restore its monophyly. Neither alternative was implemented, however, pending a more comprehensive analysis with a larger and more representative sample of diplocentrid species.

Recently, Diplocentrus poncei Francke \& QuijanoRavell, 2009, the first species of Diplocentrus with accessory trichobothria on the pedipalp chela and patella, was described. Francke \& Quijano-Ravell (2009) also discovered accessory trichobothria on the pedipalp patella of Diplocentrus magnus Beutelspacher \& LópezForment, 1991. These two species from the central Mexican states of Michoacán and Guerrero, respectively, are unique among diplocentrids in presenting neobothriotaxic pedipalps, raising questions about their phylogenetic placement within Diplocentrus.

A quantitative test of the monophyly and phylogenetic position of Diplocentrus is necessary to revise its diagnosis and taxonomic limits with respect to other diplocentrid genera. The present contribution provides a phylogenetic analysis of 29 species of Diplocentrus, five exemplar species representing the three putatively most closely related diplocentrid genera, and an exemplar of a more distantly related diplocentrid genus. The analysis was based on 95 morphological characters and 4202
aligned nucleotides from DNA sequences of five markers in the nuclear and mitochondrial genomes. Separate and simultaneous parsimony analyses of the morphological and DNA sequence data were conducted with equal weighting and six implied weighting regimes. The nuclear and mitochondrial DNA sequence data were also analyzed separately and simultaneously with Bayesian inference.

2. Material and methods

2.1. Taxa

Thirty-five species of six diplocentrid genera were included in the analysis (Appendix 1). The ingroup comprised 29 species of Diplocentrus, including the type species and representatives of both species groups, selected to cover the geographical distribution and morphological diversity of the genus (Prendini 2001). Based on the phylogeny of Prendini (2000), exemplar species of the three putatively most closely related diplocentrid genera, Bioculus, Didymocentrus and Tarsoporosus Francke, 1978, were included as outgroup taxa, with an exemplar species of a more distantly related diplocentrid genus, He teronebo Pocock, 1899, as the primary outgroup taxon. Bioculus and Didymocentrus were each represented by the type species and a second species, selected to maximize morphological diversity (Prendini 2001).

2.2. Material examined

Scorpions were collected at night with ultraviolet light detection and during the daytime, by turning rocks and excavating burrows (SantibáÑez-López et al. 2013). Tissue samples, mostly taken from immature specimens, were deposited in the Ambrose Monell Collection for Molecular and Microbial Research at the American Museum of Natural History (AMNH), New York (Table 1). Adult voucher specimens, collected from the same populations, were deposited in the AMNH and the Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City.

2.3. Morphological characters

Ninety-five qualitative characters of adult morphology (Appendix 2) were scored (Table 2) for the 35 terminal taxa in the analysis using freshly collected and/or museum material. Morphological terminology follows Vachon (1974) for trichobothria, Francke (1977) for metasomal carination, Prendini (2000) for pedipalpal carination, and Prendini et al. (2003) for carapacial surfaces.

Table 1. Genbank accession codes for tissue samples, deposited in the Ambrose Monell Collection for Molecular and Microbial Research (AMCC) at the American Museum of Natural History, New York, from which DNA was extracted and sequenced for phylogenetic analyses of 35 species in 6 diplocentrid scorpion genera, Bioculus Stahnke, 1968, Didymocentrus Kraepelin, 1905, Diplocentrus Peters, 1861, and Heteronebo Pocock, 1899, Kolotl Santibáñez-López et al., 2014, and Tarsoporosus Francke, 1978. Provenance data provided in Appendix 1.

Species	Specimen	AMCC	18S	28S	12S	16 S	COI
Heteronebo jamaicae	10	LP 5131	KM514559	KM514594	KM514489	KM514524	KM514629
Tarsoporosus kugleri	1%	LP 5204	KM514560	KM514595	KM514490	KM514525	KM514630
Bioculus caboensis	1 ¢	LP 1796	KM514561	KM514596	KM514491	KM514526	KM514631
Bioculus comondae	1 juv.	LP 3123	KM514562	KM514597	KM514492	KM514527	KM514632
Didymocentrus krausi	1 subad. ${ }^{\circ}$	LP 1987	KM514563	KM514598	KM514493	KM514528	KM514633
Didymocentrus lesueurii	10^{\prime}	LP 3638	KM514564	KM514599	KM514494	KM514529	KM514634
Kolot/ magnus	1 juv.	LP 7029	KM514565	KM514600	KM514495	KM514530	KM514635
Kolot/ poncei	1 juv.	LP 7030	KM514566	KM514601	KM514496	KM514531	KM514636
Diplocentrus anophthalmus	1 subad. ¢	LP 10980	KM514567	KM514602	KM514497	KM514532	KM514637
Diplocentrus bereai	1 juv.	LP 6532	KM514568	KM514603	KM514498	KM514533	KM514638
Diplocentrus coddingtoni	1 juv.	LP 9169	KM514569	KM514604	KM514499	KM514534	KM514639
Diplocentrus colwelli	1 \%	LP 6483	KM514570	KM514605	KM514500	KM514535	KM514640
Diplocentrus coylei	1 subad. $0^{\prime \prime}$	LP 7031	KM514571	KM514606	KM514501	KM514536	KM514641
Diplocentrus cozumel	1%	LP 4102	KM514572	KM514607	KM514502	KM514537	KM514642
Diplocentrus diablo	1 juv.	LP 6386	KM514573	KM514608	KM514503	KM514538	KM514643
Diplocentrus formosus	1%	LP 10979	KM514574	KM514609	KM514504	KM514539	KM514644
Diplocentrus gertschi	1%	LP 4707	KM514575	KM514610	KM514505	KM514540	KM514645
Diplocentrus hoffmanni	10	LP 2036	KM514576	KM514611	KM514506	KM514541	KM514646
Diplocentrus jaca	1%	LP 9518	KM514577	KM514612	KM514507	KM514542	KM514647
Diplocentrus keyserlingii	1%	LP 6517	KM514578	KM514613	KM514508	KM514543	KM514648
Diplocentrus kraepelini	1 subad. ¢	LP 10973	KM514579	KM514614	KM514509	KM514544	KM514649
Diplocentrus lindo	10°	LP 3078	KM514580	KM514615	KM514510	KM514545	KM514650
Diplocentrus melici	1 juv.	LP 6546	KM514581	KM514616	KM514511	KM514546	KM514651
Diplocentrus mexicanus	1 juv.	LP 7674	KM514582	KM514617	KM514512	KM514547	KM514652
Diplocentrus mitlae	1 subad. $0^{\prime \prime}$	LP 11034	KM514583	KM514618	KM514513	KM514548	KM514653
Diplocentrus motagua	1 juv.	LP 5997	KM514584	KM514619	KM514514	KM514549	KM514654
Diplocentrus peloncillensis	1 juv.	LP 2140A	KM514585	KM514620	KM514515	KM514550	KM514655
Diplocentrus rectimanus	10°	LP 2032	KM514586	KM514621	KM514516	KM514551	KM514656
Diplocentrus reddelli	10	LP 10981	KM514587	KM514622	KM514517	KM514552	KM514657
Diplocentrus sagittipalpus	10	LP 10975	KM514588	KM514623	KM514518	KM514553	KM514658
Diplocentrus silanesi	10°	LP 2025	KM514589	KM514624	KM514519	KM514554	KM514659
Diplocentrus sissomi	1%	LP 6531	KM514590	KM514625	KM514520	KM514555	KM514660
Diplocentrus tehuacanus	10	LP 2044	KM514591	KM514626	KM514521	KM514556	KM514661
Diplocentrus whitei	1 juv.	LP 4101	KM514592	KM514627	KM514522	KM514557	KM514662
Diplocentrus zacatecanus	1 juv.	LP 5339	KM514593	KM514628	KM514523	KM514558	KM514663

Twenty-four characters were adopted and variously modified from previous analyses by Prendini (2000), Prendini et al. (2003) and Mattoni et al. (2012). Twen-ty-one characters had not been studied previously in diplocentrid scorpions (e.g., basitarsal spiniform macrosetae).

Most diplocentrid species are sexually dimorphic, especially with respect to pedipalp shape and carination. Separate characters were defined for sexually dimorphic structures of males (18 characters) and females (16 characters). Adult males are unknown in Diplocentrus anophthalmus Francke, 1977 and Kolotl magnus (Beutelspacher \& López-Forment, 1991), hence questionmarks were inserted for these species, where applicable.

Seventy-nine characters were binary and sixteen multistate. One multistate character was additive (char-
acter 47 , we consider the states of this character to be a transformation series), and the other fifteen characters nonadditive (unordered). Fifteen characters were uninformative and deactivated in all analyses (\dagger in Appendix $2)$.

2.4. DNA sequencing

DNA isolation, PCR amplification and sequencing were conducted at the AMNH Sackler Institute for Comparative Genomics, using standard protocols (Prendini et al. 2002, 2003, 2005). Five gene markers were sequenced based on previous studies of scorpions and other arachnids (Prendini et al. 2003, 2005): 18S rDNA (18S) and the D3 region of the 28 S rDNA (28S), from the nuclear
Table 2．Distribution of states among 95 morphological characters scored for parsimony analyses of 35 species in 6 diplocentrid scorpion genera，Bioculus Stahnke，1968，Didymocen－ trus Kraepelin，1905，Diplocentrus Peters，1861，and Heteronebo Pocock，1899，Kolotl Santibáñez－López et al．，2014，and Tarsoporosus Francke，1978．Character states are scored $0-3$ ，？（unknown）or－（inapplicable）．Refer to Appendix 1 for material examined and Appendix 2 for character descriptions．
00000000001111111111222222222233333333334444444444555555555566666666667777777777888888888899999 01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234 00000100001110110111111000001010100 00000100100011100111100000002010101 00000100100011000111100000002010101
 $\stackrel{\rightharpoonup}{-1}$

 \begin{tabular}{l}
\circ

0

0

0

\hline

 ○．

\circ

0

0

0

\hline

 O \therefore

\circ

\hline 8

\hline-

\hline

 ○

0

0

0

0

\hline
\end{tabular} $\begin{array}{r}4 \\ 0 \\ 0 \\ -1 \\ \hline\end{array}$ 응 0000 응 00000 \therefore 응

 \circ
-
$\stackrel{\rightharpoonup}{\circ}$
\circ
\vdots
-
-

․
0
0
0
0
0
0
-
-
-

-0
0
0
0
0
-1
-
-1 1010000100 0
0
0
0
0
0
0
0
-1
-1
-1
-1 응 －
－
－
0
0
-
-1 1110000100
 응 0010000100 -1
0
-1
0
0
0
0
-
-1
-1 or
0
0
0
0
0
0
0
\vdots
0
0
-
-
-
-
-1 1000000101111000111 111111111 111110111 1001111110 7
7
7
7 1100011111 111110111 0000100101111001111
 00000100100011110111

 00000100101111000111 00000100100111010111 0000010010 00000100101111111111 $0000000000001----00$ 0001－－－－00 110011400 0011－－－－00 0
-
-
-
I

\vdots
0
 $01 ? 00000000000010010$ 21000000000000010010 01000000000000010010 $\begin{array}{ll}0 & 0 \\ -1 & - \\ 0 & 0 \\ -1 & - \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1\end{array}$ 11000000000000010010
 －0てT 010000000 0101010110
 0001010110 ？？？10？？？10 211111111

| 3111110111 | 0001010111 | 0111111111 |
| :--- | :--- | :--- | :--- |
| 101110111 | 0001010011 | 0101110111 |
| 100100110 | 0101110011 | 0111111111 |
| 100100110 | 0101110011 | 0111111111 | 010？？？2000 $111010001100 ? ? 11 ? ? 11$ 1？1？0？130？

 010011302 $\begin{array}{cc}\text { N } & 0 \\ \text { M } & \text { M } \\ \text { H } \\ - & 子 \\ 0 & - \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ 1000011302 N
m
-1
-1
0
0
-1
0
0 1000011302

 1010000302 1010021300 | \circ |
| :--- |
| 0_{0} |
| 0 |
| 0 |
| 0 |
| |
| 0 |
| 0 |
| 0 |
| -1 |
| -1 |

 $\begin{array}{ll}\text { N } & 2 \\ 0 & 0 \\ 0 & m \\ 0 & 0 \\ -1 & 2 \\ -1 & 0 \\ - & 0 \\ 0 & 0 \\ -1 & \end{array}$ 1000020302
1011121202
 $\begin{array}{ll}0 & N \\ \text { N } & 0 \\ H & 0 \\ - & 0 \\ - & 0 \\ 0 & 0 \\ 0 & 0 \\ -1 & - \\ 0 & 0\end{array}$ 010001200101010110001011111111010100010010000102000100000000 101010110 $? ? 10 ? ? ? 10$
101010110

 0101011110 $\begin{array}{ll}0 & 0 \\ 0 & - \\ - & - \\ 0 & 0 \\ 0 & 0 \\ -1 & न \\ - & न \\ - & 0\end{array}$ 011000110 $\begin{array}{ll}0 & - \\ -1 & 0 \\ - & - \\ 0 & - \\ -1 & 0 \\ -1 & - \\ 0 & - \\ -1 & 0 \\ 1 & \end{array}$ 1111100100 $\begin{array}{lllllll}0101010001 & 0101111000 & 1000010001 & 1111100100 & 1000011302 & 2100000000 \\ 2111010111 & 0102011000 & 1201111111 & 2011000110 & 1010000202 & 2100000000 \\ 2111010111 & 0102011000 & 1201111111 & 2001000110 & 1010011202 & 0100000000\end{array}$ $11111101110101111000 \quad 1001111111110100011010100003020100000000$ 1101000110 $21111101110102011000121111111101010001101010010200 \quad 0100000000$ $\begin{array}{llllllll}3011010101 & 0001111011 & 0111111111 & 0101000110 & 1010011302 & 0000000000 \\ 2011110111 & 0001011000 & 1010111011 & 1111000110 & 1010011202 & 2100000000\end{array}$ $\begin{array}{llllllll}2110011111 & 0002011000 & 1201111111 & 2001000110 & 1011010202 & 0100000000 \\ 1100000000 & 0101011000 & 1011111111 & 0101000110 & 1000020302 & 0100000000\end{array}$ \begin{tabular}{l}
H

0

-

-

-

-

-

-

-

0

\hline
\end{tabular} $\begin{array}{lllllll}2111010111 & 0101111000 & 1011111111 & 0101000110 & 1000020202 & 0100000000 \\ 2111010111 & 0102011000 & 1211111111 & 0001000110 & 1010011202 & 0100000000\end{array}$ $\begin{array}{ll}0 & 0 \\ H & 0 \\ \vdots & \\ 0 \\ 0 \\ 0 \\ \vdots & \\ 0 & \\ \vdots & \\ 0 & \end{array}$ $\begin{array}{lllllll}0100012001 & 0101011000 & 1011111111 & 0101000100 & 1000010200 & 0100000000 \\ 2011112111 & 0001111000 & 1001111111 & 0001000110 & 1010000202 & 0100000000\end{array}$ 10000200001101000110011111111 201？？？0111 0001－11202 10？？11？？11 00010110001011011111 $\begin{array}{cc}0 & 7 \\ 0 & 7 \\ 0 & 7 \\ - & 7 \\ - & 7 \\ 0 & 7 \\ - & 7 \\ 0 & 7\end{array}$ 211101111101020110001211111111

 0101111000101111111 $1001011000-1111111111$ 01020110001200111111 010101000101011110001000010001 $\begin{array}{lllllll}0101010001 & 0101111000 & 1000010001 & 1111100100 & 1000011302 & 2100000000 \\ 2111010111 & 0102011000 & 1201111111 & 2011000110 & 1010000202 & 2100000000 \\ 2111010111 & 0102011000 & 1201111111 & 2001000110 & 1010011202 & 0100000000\end{array}$ 111111011101011110001001111111 010101211101011110110011111111 $21111101110102011000 \quad 121111111101010001101010010200 \quad 0100000000$ $\begin{array}{llllllll}3011010101 & 0001111011 & 0111111111 & 0101000110 & 1010011302 & 0000000000 \\ 2011110111 & 0001011000 & 1010111011 & 1111000110 & 1010011202 & 2100000000\end{array}$ 211001111100020110001201111111200100011010110102020100000000 $\begin{array}{llllllll}1100000000 & 0101011000 & 1011111111 & 0101000110 & 1000020302 & 0100000000 \\ 2110010101 & 0102011000 & 1201111111 & 1011101101 & 1011121202 & 1100000000\end{array}$ $\begin{array}{lllllll}2111010111 & 0101111000 & 1011111111 & 0101000110 & 1000020202 & 0100000000 \\ 2111010111 & 0102011000 & 1211111111 & 0001000110 & 1010011202 & 0100000000\end{array}$
 $\stackrel{H}{H}$
$\stackrel{\rightharpoonup}{H}$
$\stackrel{\rightharpoonup}{1}$ $\begin{array}{lllllll}0100012001 & 0101011000 & 1011111111 & 0101000100 & 1000010200 & 0100000000 \\ 2011112111 & 0001111000 & 1001111111 & 0001000110 & 1010000202 & 0100000000\end{array}$ 20111121110001111000100111111100010001101010000202010000000000000100101111011111101000010110000 211101011101020110001211111111
 011001000101010110001001000101111110010010001113022100000000号

genome，and 12 S rDNA（12S）， 16 S rDNA（16S）and Cy－ tochrome c Oxidase I（COI），from the mitochondrial ge－ nome．The nuclear gene fragments were amplified using primer pairs $18 \mathrm{~S} 1 \mathrm{~F} / 5 \mathrm{R}$ ， $18 \mathrm{~S} 3 \mathrm{~F} / \mathrm{bi}$ ，and $18 \mathrm{Sa} 2.0 / 9 \mathrm{R}$ for the 18 S rDNA（Wheeler et al．1993）and $28 \mathrm{Sa} /$ bout for the

28 S rRNA（NunN et al．1996）．The mitochondrial gene fragments were amplified using primers $12 \mathrm{Sai} / \mathrm{bi}$ for the 12 S rDNA（Kocher et al．1989），16Sar／br（Simon et al． 1991）and HCO／LCO（Folmer et al．1994）or HCOout－ out／LCO and ExtA／B（Prendini et al．2005）for the COI．

Table 3. Statistics for aligned DNA sequences of 5 nuclear and mitochondrial gene markers used for phylogenetic analyses of 35 species in 6 diplocentrid scorpion genera. Aligned length (base-pairs); number and percentage of variable positions; number and percentage of parsimony-informative (PI) positions, including gaps (and percentage of aligned length); number and percentage of conserved (invariant) positions; percentage nucleotide composition; percentage of transitions (ts) and transversions (tv) for each nucleotide combination and overall. Percentages for COI represent total, first, second and third positions (COI 123), respectively. Calculations were conducted using the maximum composite likelihood test (mcl) under the TamURA-Nei (2004) model of substitution..

		Nuclear		Mitochondrial			Total
		Ribosomal				Protein-coding	
		18S	28 S	12S	16S	COI	
	Length (bp)	1761	520	347	499	1078	4202
	Variable (\%)	14 (1)	52 (10)	223 (64)	272 (54)	485 (45)	1021 (24)
	PI (\%)	10 (1)	28 (5)	181 (52)	233 (47)	370 (34)	824 (20)
	Conserved (\%)	1747 (99)	466 (90)	122 (35)	218 (44)	593 (55)	3168 (75)
	A (COI 123) \%	25	23	40.21	36.34	20 (19 26 14)	26
	C (COI 123) \%	23	20	9.96	13.77	13 (511 22)	19
	G (COI 123) \%	28	26	14.57	15.89	23 (20 30 21)	24
	T (COI 12 3) \%	24	31	35.36	34	44 (56 33 43)	31
ts	$\mathbf{A} \leftrightarrow \mathbf{G}(\mathrm{COI} 123) \%$	5	20	25	27	51 (65 38 44)	35
	$\mathbf{C} \leftrightarrow \mathbf{T}(\mathrm{COI} 123$) \%	49	50	39	37	12 (11 25 29)	22
tv	A $\leftrightarrow \mathbf{C}(\mathrm{COL} 123) \%$	11	7	9	9	6 (375)	10
	$\mathbf{A} \leftrightarrow \mathbf{T}(\mathrm{COI} 123) \%$	11	7	14	13	12 (9 11 8)	12
	$\mathbf{C} \leftrightarrow \mathbf{G}(\mathrm{COL} 123) \%$	12	8	4	5	6 (376)	9
	$\mathbf{G} \leftrightarrow \mathbf{T}$ (COI 123) \%	12	8	9	9	13 (9 12 8)	12
	ts: tv (CO1 123)	1.11	2.27	1.28	1.43	1.46 (2.29 1.58 2.61)	1.27

DNA was isolated from pedipalp, leg, or metasomal tissues dissected from freshly collected specimens fixed in $95-100 \%$ ethanol using the Qiagen DNeasy Blood and Tissue Kit. PCR amplification was conducted with Ready-To-Go PCR beads (Amersham Pharmacia Biotech) in a $25 \mu 1$ reaction comprising $21 \mu \mathrm{l}$ de-ionized water, $1 \mu \mathrm{l}$ forward primer, $1 \mu \mathrm{l}$ reverse primer and $2 \mu \mathrm{l}$ DNA. The PCR program consisted of an initial denaturing step at $94^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 30-35$ amplification cycles $\left(94^{\circ} \mathrm{C}\right.$ for $15 \mathrm{~s}, 49^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 15 s), and a final step of $72^{\circ} \mathrm{C}$ for 7 min , in a GeneAmp PCR System 9700 thermocycler. Specific conditions were optimized for primer pairs (e.g., a lower annealing temperature was used for COI). PCR products were verified on 1% agarose/TBE electrophoretic gels stained with SYBR Safe (Invitrogen, Life Technologies Corporation). PCR products were purified using an AMPure Magnetic Beads Purification System (Agencourt Bioscience) and resuspended in $40 \mu \mathrm{l}$ de-ionized water using a Biomek NX robot (BeckmanCoulter). Double-stranded sequencing of the purified PCR product was conducted by the dideoxy termination method (Sanger et al. 1977) with AmpliTaq DNA Polymerase FS (Perkin Elmer) and dye-labeled terminators (Applied Biosystems Inc. Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit), in a GeneAmp PCR System 9700 thermocycler. Cycle-sequencing was conducted in a $10 \mu 1$ reaction, comprising $0.5 \mu \mathrm{l}$ Big Dye, $2 \mu \mathrm{l}$ Big Dye Terminator Buffer, $1 \mu \mathrm{l}$ forward or reverse primer, $4 \mu \mathrm{l}$ de-ionized water, and $2.5 \mu \mathrm{l}$ purified PCR product. The cycle-sequencing program consisted of 35 amplification cycles $\left(94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{~s}, 50^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 60^{\circ} \mathrm{C}$ for 4 min). Cycle sequencing product was cleaned using

CleanSeq Clean-Up (Agencourt Bioscience) on the Biomek NX robot. Purified cycle sequencing product was sequenced with an Applied Biosystems Inc. 3730xl automated capillary sequencer.

The accuracy of sequences was verified by independently amplifying and sequencing the complementary strands of all fragments. Primer sequences were removed and complementary strands of DNA assembled into consensus sequences, edited, and checked for quality using Sequencher 5.0 (Gene Codes). If complementary strands disagreed (besides minor mismatches), the sample was reamplified and sequenced to resolve discrepancies.

One hundred and seventy five sequences were generated from 38 samples for the study (Table 1). The 16 S fragment was the most variable in length among the genetic markers, ranging from 482-485 nucleotides (nt) in the outgroup and 481-490 nt in the ingroup. The 12 S fragment varied from $333-335 \mathrm{nt}$ in the outgroup and $332-339 \mathrm{nt}$ in the ingroup. The COI fragment was 1078 nt in the outgroup and varied from $1072-1078 \mathrm{nt}$ in the ingroup. Length variation was minimal in the nuclear markers: 18 S was 1761 nt in all species and 28 S was 511 nt in all except Didymocentrus krausi Francke, 1978, which was 516 nt .

2.5. DNA sequence alignment

Static alignments of the length-variable 28S, 12S, 16 S and COI gene fragments were generated with MAFFT online version 6 (Катон et al. 2002, 2005). The G-INSi strategy, which performs a global alignment based on
an FFT approximation (КАтон et al. 2002), was selected. This method is suitable for large datasets comprising sequences with relatively limited variation in length, i.e., few, short gaps (Katoh et al. 2005). The scoring matrix for nucleotide sequences was set to $1 / \mathrm{PAM} \mathrm{K}=2$, gap opening penalty to 1.53 , and offset value to 0 . Alignments obtained with MAFFT were analyzed using MEGA 5.05 (Tamura et al. 2011) to calculate genetic content and transition : transversion ratios (Table 3).

2.6. Phylogenetic analyses

Separate and simultaneous parsimony analyses of the concatenated DNA sequence alignments (824 informative characters) and the morphological data matrix (80 informative characters) were conducted with equal weighting or implied weighting with six values of the concavity constant $(k)=1,3,10,30,60$ and 100 , using TNT ver 1.1 (Goloboff et al. 2008). In each case, gaps were treated as missing data, uninformative characters deactivated using the xinact; command, and a driven search, combining three of the new technology algorithms (Nixon 1999; Goloboff 1999) executed using a script file modified from Dimitrov et al. (2013): hold 10000; rseed1; xm: noverb nokeep; rat: it 0 up 4 down 4 au 0 num 36 give 99 equa; dri: it 10 fit 1.00 rfi 0.20 aut 0 num 36 give 99 xfa 3.00 equa; sec: mins 45 maxs 45 self 43 incr 75 minf $10 \operatorname{god} 75$ drift 6 glob 5 dglob 10 rou 3 xss 10-14+2 noxev noeq; tf: rou 5 minf 3 best ke nochoo swap; xm : level 10 nochk rep 50 fuse 3 dri 10 rss css noxss mult nodump conse 5 conf 75 nogive notarg upda autoc 3 xmix; xm; xmult.

The nuclear and mitochondrial DNA datasets were also analyzed separately and simultaneously with Bayesian inference, using MrBayes ver. 3.2 (Huelsenbeck \& Ronquist 2001; Ronquist \& Huelsenbeck 2003). The best fitting model of sequence evolution was selected using jModelTest ver. 1.0.1 (Posada 2008), according to the Akaike information criterion, on the basis of which the GTR $+\mathrm{G}+\mathrm{I}$ model was applied to all markers. The analysis comprised two iterations of four Markov chain Monte Carlo models, performed for 5 million generations for all concatenated DNA sequence alignments, and 2 million generations for the separate nuclear and mitochondrial DNA sequence alignments. Trees were sampled every 1000 generations, those sampled before stationarity discarded using the burnin command.

The relative support for each node in the topology obtained by the parsimony analyses was calculated in TNT using 1000 jackknife pseudoreplicates with heuristic searches, consisting of ten random addition sequences, followed by ten iterations of tree bisection-reconnection, retaining one tree at each iteration (Dimitrov et al. 2013), and Bremer support (Bremer 1994), by searching for suboptimal trees up to ten steps longer (for the separate morphological analyses) or 100 steps longer (for separate analyses of the concatenated DNA sequence alignments and simultaneous analyses of the morphology and DNA), retaining 1000 trees at each iteration. We recognize that

Table 4. Tree statistics obtained from parsimony analyses of 35 species in 6 diplocentrid scorpion genera. Length, consistency index (CI), retention index (RI), Fit and adjusted homoplasy (AH) of most parsimonious trees (MPTs) obtained by separate and simultaneous (Simul) analyses of the morphological (Mor) dataset, and the molecular dataset (concatenated aligned DNA sequences of five nuclear and mitochondrial gene markers, Mol), with equal weighting (EW) and implied weighting (IW), with six concavity values (k). Analyses of the molecular dataset were conducted with gaps as missing data.

		MPTs	Length	$\mathbf{C I}$	RI	Fit	AH
Mor	IW: $k=1$	2	329	0.292	0.574	43.19	39.81
	IW: $k=3$	2	321	0.299	0.589	53.43	29.57
	IW: $k=10$	2	318	0.302	0.595	68.11	14.89
	IW: $k=30$	3	316	0.304	0.599	76.72	6.28
	IW: $k=60$	3	316	0.304	0.599	79.62	3.38
	IW: $k=100$	2	316	0.304	0.599	80.91	2.09
	EW	19	363	0.264	0.513	50.82	-
Mol	IW: $k=1$	1	4303	0.328	0.47	329.37	494.63
	IW: $k=3$	1	4286	0.329	0.473	478.28	345.72
	IW: $k=10$	1	4530	0.367	0.475	643.4	180.6
	IW: $k=30$	1	4267	0.33	0.476	745.02	78.98
	IW: $k=60$	1	4267	0.33	0.476	780.91	43.09
	IW: $k=100$	1	4267	0.33	0.476	797.14	26.86
	EW	2	4284	0.33	0.476	476.48	-
Simul	IW: $k=1$	1	4682	0.322	0.471	361.3	545.7
	IW: $k=3$	1	4682	0.322	0.471	525.43	381.57
	IW: $k=10$	1	4665	0.323	0.474	707.51	199.49
	IW: $k=30$	1	4663	0.323	0.474	819.74	87.26
	IW: $k=60$	1	4663	0.323	0.474	859.39	47.61
	IW: $k=100$	1	4663	0.323	0.474	877.32	29.68
	EW	3	4681	0.323	0.474	706.75	-

Bremer support values do not indicate relative branch support (DeBry et al. 2001). Posterior probabilities are shown for the Bayesian phylogram obtained by simultaneous analysis of the concatenated nuclear and mitochondrial DNA sequence alignments, and branch lengths on the phylograms obtained by separate analyses of the nuclear and mitochondrial DNA sequence alignments.

A preferred hypothesis was selected from among the topologies recovered by the simultaneous parsimony analyses of the morphology and DNA. Morphological characters were optimized unambiguously and with accelerated transformation (Farris 1970; Swofford \& Maddison 1987, 1992) in WINCLADA 1.00.09 (Nixon 1999-2002).

3. Results

3.1. Morphological parsimony analyses

Separate parsimony analyses of the morphological character matrix with equal weighting or implied weighting with $k=1,3,10,30,60$ and 100 (Table 4) consistently

recovered the monophyly of Bioculus, Didymocentrus, Diplocentrus, and Kolotl, with the following relationships (Fig. 1): (Diplocentrus (Bioculus (Didymocentrus + Kolotl)). Diplocentrus motagua Armas \& Trujillo, 2009 was consistently placed sister to the remaining species of Diplocentrus. Bioculus, Didymocentrus, and Kolotl received high jackknife and Bremer support values, whereas Diplocentrus received lower support. Jackknife and Bremer support values predictably increased with lower values of k (increased weighting against homoplasy). Relationships within Diplocentrus were weakly supported and mostly unresolved. The keyserlingii group was paraphyletic and its placement, in turn, rendered the mexicanus group paraphyletic.

3.2. Molecular parsimony analyses

Separate parsimony analyses of the concatenated DNA sequence alignments with equal weighting or implied weighting with $k=1,3,10,30,60$ and 100 (Table 4)
consistently recovered the monophyly of Bioculus, Didymocentrus, and Kolotl (Fig. 2) with high jackknife and Bremer support. Diplocentrus was monophyletic only in the analysis with implied weighting and $k=1$, where it received lower support than Bioculus, Didymocentrus, and Kolotl. In all other analyses, a monophyletic group of four species, i.e., Diplocentrus peloncillensis Francke, 1975, Diplocentrus silanesi Armas \& Martín-Frías, 2000, Diplocentrus whitei (Gervais, 1844), and Diplocentrus zacatecanus Hoffmann, 1931, hereafter referred to as the "zacatecanus group", was consistently placed sister to Bioculus, as follows: (Didymocentrus (Kolotl (Diplocentrus (Bioculus + zacatecanus group)))). Although the group comprising Bioculus and the zacatecanus group was weakly supported, the group comprising the remaining species of Diplocentrus received high support.

The keyserlingii and mexicanus groups of Diplocentrus were consistently paraphyletic. Diplocentrus coylei Sissom \& Fritts, 1986 and Diplocentrus formosus Armas \& Martín-Frías, 2003, previously assigned to the keyserlingii group, were placed within the mexicanus group.

3.3. Molecular Bayesian analyses

Bayesian inference of the nuclear DNA recovered the monophyly of Bioculus, Didymocentrus, Diplocentrus, and Kolotl (Fig. 3). Species relationships within Diplocentrus were mostly unresolved, and previously recognized species groups were not monophyletic. Bayesian inference of the mitochondrial DNA also recovered the monophyly of Bioculus, Didymocentrus and Kolotl. Diplocentrus was rendered paraphyletic by the placement of Bioculus sister to the zacatecanus group (Fig. 4). The keyserlingii and mexicanus groups were rendered paraphyletic due to the placement of D. coylei and D.formosus within the latter. The remaining spe-
cies of the keyserlingii group were placed sister to the group comprising D. coylei, D. formosus and members of mexicanus group.

The topology recovered with Bayesian inference of the concatenated nuclear and mitochondrial DNA (Fig. 5) was similar to the topologies obtained by parsimony analyses of this dataset (Fig. 2), especially the analysis with implied weighting and $k=1$. Bioculus, Didymocentrus, Diplocentrus and Kolotl were monophyletic. The main difference concerned the position of the zacatecanus group, placed sister to Bioculus, rendering Diplocentrus paraphyletic, in most of the parsimony analyses (Fig. 2), but sister to other Diplocentrus exemplars, rendering Diplocentrus monophyletic, in the Bayesian analysis (Fig. 5). Diplocentrus anophthalmus was placed sister to all other Diplocentrus exemplars in the parsimony analyses, whereas it was placed within the mexicanus group in the Bayesian analyses. The zacatecanus group was monophyletic and placed sister to a group comprising members of the keyserlingii and mexicanus groups. The keyserlingii and mexicanus groups were rendered paraphyletic by the placement of D. coylei and D. formosus within the mexicanus group. The remaining members of the keyserlingii group formed a monophyletic sister group of the group comprising D. coylei, D. formosus and members of mexicanus group. All Bayesian analyses recovered the monophyly of Bioculus, Didymocentrus, Diplocentrus and Kolotl with low posterior probabilities.

3.4. Simultaneous parsimony analyses

Simultaneous parsimony analyses of the concatenated DNA sequence alignments and morphological character matrix with equal weighting or implied weighting and $k=$ $1,3,10,30,60$ and 100 (Table 4) consistently recovered the monophyly of Bioculus, Didymocentrus, Diplocentrus, and Kolotl with the following relationships (Fig. 6): ((Bioculus + Diplocentrus) (Didymocentrus + Kolotl)). The four genera received high jackknife and Bremer support values. The zacatecanus group was consistently recovered with high jackknife support, and placed sister to a group comprising members of the keyserlingii and mexicanus groups, which also received high support. The keyserlingii and mexicanus groups were consistently rendered paraphyletic by the placement of D. coylei and D. formosus within the mexicanus group. The remaining members of the keyserlingii group were consistently monophyletic with high support, and placed sister to a monophyletic group comprising D. coylei, D. formosus and members of mexicanus group, which received low jackknife support. Diplocentrus anophthalmus was consistently placed sister to all other members of the mexicanus group. As in the separate parsimony analyses of the morphology and concatenated nuclear and mitochondrial DNA sequences, jackknife and Bremer support values increased with lower values of k.

The topology obtained by the simultaneous parsimony analysis with implied weighting and $k=3$ is preferred,
due to its high tree statistics, jackknife and Bremer support values (Fig. 7, Table 4). The topology recovered by this analysis is congruent with the 50% majority rule consensus of the most parsimonious trees obtained by the simultaneous parsimony analyses with equal weights and implied weights with $k=1,3,10,30,60$ and 100. Bioculus, Didymocentrus and Kolotl were monophyletic, with high jackknife and Bremer support values, whereas Diplocentrus was monophyletic with high jackknife support, but low Bremer support. Three groups were recovered within Diplocentrus. The zacatecanus group was placed sister to a more inclusive group comprising all species previously assigned to the keyserlingii group, except D. coylei and D. formosus. This group was, in turn, placed sister to a group comprising D. coylei, D. formosus and members of the mexicanus group.

4. Discussion

4.1. Monophyly and relationships among genera

All analyses corroborated the monophyly of Bioculus and Didymocentrus (each based on two exemplar species per genus) and confirmed the need to redefine the generic limits of Diplocentrus by excluding its two neobothriotaxic species. However, the monophyly of Bioculus and Didymocentrus await further testing with a larger and more representative sample of species, before they can be satisfactorily diagnosed. Bioculus was supported by one morphological synapomorphy, i.e., equal development of the pedipalp chela dorsal secondary, digital and retrolateral secondary carinae. Didymocentrus was supported by four morphological synapomorphies: orientation of the ventromedian carina of the pedipalp chela manus, with the distal edge directed towards trichobothrium V_{1}; concavity on the proventral surface of the chela manus of the male; distal position of chela trichobothrium ib; and rounded laterodistal lobes of the leg telotarsi.

Parsimony and Bayesian analyses consistently placed the two neobothriotaxic diplocentrid species from central Mexico, previously assigned to Diplocentrus, in a monophyletic group, sister to Didymocentrus (the preferred hypothesis) or the monophyletic group comprising Bioculus and Diplocentrus (topology obtained by parsimony and Bayesian analyses of the concatenated nuclear and mitochondrial DNA sequences), to the exclusion of all other exemplar species of Diplocentrus. This finding justifies removal of the two species from Diplocentrus and the creation of a new genus, Kolotl, to accommodate them (SantibáÑez-López et al. 2014). The two species can be distinguished from all other diplocentrids by the following combination of characters. The anteromedian longitudinal sulcus of the carapace is complete. The subdistal denticle of the cheliceral movable finger is equal to the medial denticle and the dorsal distal denticle equal

to the ventral distal denticle. The prolateral, median and retrolateral denticle rows of the pedipalp chela fingers are well defined from the basal quarter to the tip of the finger, and continuous, i.e., not interrupted by larger denticles. The pedipalps are neobothriotaxic, with accessory trichobothria present on the ventral and retrolateral surfaces of the patella. Kolotl closely resembles Didymocentrus based on the dense punctation of the nongranular pedipalp surfaces, and the similar development of the pedipalp chelal carinae. However, species of Didymocentrus differ from Kolotl in the presence of a distinct concavity on the prolateral surface of the pedipalp chela in adult males, proximal to trichobothria $i b$ and $i t$, and in the dentition of the pedipalp chela fingers: the prolateral, median and retrolateral denticle rows are weakly defined in the proximal third, continuous and parallel, not from the base of the finger, but from its proximal third.

The monophyly of the remaining exemplar species of Diplocentrus (i.e., excluding the two neobothriotaxic species assigned to Kolotl by Santibáñez-López et al. 2014) differed among the analyses. Diplocentrus monophyly was recovered by the separate parsimony analyses of the morphology and the concatenated nuclear and mitochondrial DNA, with implied weighting and $k=1$, the Bayesian analyses of the nuclear DNA and the concatenated nuclear and mitochondrial DNA, and the simultaneous parsimony analyses of the morphology and DNA. However, Diplocentrus was rendered paraphyletic in the Bayesian analyses of the mitochondrial DNA and the parsimony analyses of the concatenated nuclear and mitochondrial DNA with equal weighting or implied weighting and $k=$

3, 10, 30, 60 and 100, due to placement of the zacatecanus group sister to Bioculus. The paraphyly of Diplocentrus in these analyses may be resolved by the inclusion of additional ingroup and outgroup taxa.

In the analyses in which Diplocentrus was monophyletic, the genus was supported by the following three morphological synapomorphies. The median denticle row of the pedipalp chela movable finger is weakly defined in the proximal third, discontinuous, and interrupted by larger denticles. The intercarinal surfaces of the male chela manus are reticulate, with reversals in D. anophthalmus and Diplocentrus mitlae Francke, 1977. A retrolateral median spiniform macroseta is present on the basitarsus of leg II, except in D. motagua, also a reversal.

4.2. Relationships within Diplocentrus

Internal relationships within Diplocentrus differed little among the analyses. Neither the keyserlingii group, as defined by SantibáÑez-Lopez et al. (2013), nor the mexicanus group, were monophyletic. Both groups were consistently rendered paraphyletic by the placement of D. coylei and D. formosus, previously assigned to the keyserlingi group, in the mexicanus group. In addition, D. anophthalmus was placed outside the mexicanus group in some topologies. The remaining members of the keyserlingi group (i.e., excluding D. coylei and D. formosus) were consistently monophyletic in the parsimony and Bayesian analyses of the concatenated nuclear and mitochondrial DNA, and in the simultaneous parsimony

lyses of the morphology and DNA, but not the separate parsimony analyses of the morphology. No consistent morphological differences, separating species of the zacatecanus group from those of the mexicanus group, have thus far been identified. The inclusion of more species and morphological characters are necessary to corroborate its validity.

The group comprising D. coylei, D. formosus and members of the mexicanus group was monophyletic in all except the separate parsimony analyses of the concatenated nuclear and mitochondrial DNA sequences, due to the position of D. anophthalmus, placed sister to all other species of the genus. All other parsimony and Bayesian analyses placed D. anophthalmus sister to the group comprising D. coylei, D. formosus and members of the mexicanus group. The placement of D. anophthal$m u s$, a troglobiont from the Yucatan Peninsula, was unexpected. It was not placed sister to Diplocentrus cozumel Beutelspacher \& Armas, 1998 or Diplocentrus reddelli Francke, 1977, the only other exemplar species from the Yucatan, in any analysis.
 ues indicated below branches.

The relationships of other species within the mexicanus group were consistent with their geographical distributions, however. A group comprising three species restricted to northeastern Mexico and the southeastern U.S.A., i.e. Diplocentrus colwelli Sissom, 1986, Diplocentrus diablo Stockwell \& Nilsson, 1987, and Diplocentrus lindo Stockwell \& Baldwin, 2001, was recovered by all analyses, except the separate parsimony analyses of the morphology and the Bayesian analysis of the nuclear DNA. A group comprising three species restricted to central Mexico, i.e. D. coylei, Diplocentrus gertschi Sissom \& Walker, 1992, and Diplocentrus tehuacanus Hoffmann, 1931 was also recovered by these analyses.

Both groups formed a larger monophyletic group, sister to species from the Yucatan Peninsula (D. cozumel and D. reddelli) and Guatemala (Diplocentrus motagua Armas \& Trujillo, 2009) to the exclusion of other species occurring in Oaxaca or Veracruz, in these analyses. The inclusion of additional species of Diplocentrus may be necessary to corroborate these relationships.

The positions of four Diplocentrus species with punctate pedipalp surfaces are noteworthy: Diplocentrus bereai Armas \& Martín-Frías, 2004 and Diplocentrus melici Armas, Martín-Frías \& Berea, 2004, both from Veracruz, Mexico; D. gertschi from Nayarit, Mexico; and D. motagua from Guatemala. Punctate pedipalps were previously
considered present only in Didymocentrus, and cited as justification for synonymizing Bioculus with the latter (Williams \& Lee 1978). Sissom \& Walker (1992) considered D. gertschi a "link" to the diplocentrids of the Baja California Peninsula (i.e., Bioculus), due to their punctate pedipalps and similar chelal carination. Sissom \& Walker's (1992) hypothesis was tested and falsified by Prendini (2000), who included D. gertschi and two exemplar species of Bioculus in his analysis of scorpionoid phylogeny. Armas \& Trujillo (2009) noticed a similarity between the pedipalp chelal carination and punctate pedipalps of D. motagua and those of Didymocentrus. However, the orientation of the pedipalp chela ventromedian carina was inconsistent with that of Didymocentrus, among other characters considered diagnostic for that genus, e.g., the presence of a retrolateral median spiniform macroseta on the basitarsus of leg II. None of these species formed a monophyletic group in the analyses presented here. Separate parsimony analyses of the morphology did not recover a close relationship between D. gertschi, D. melici, and D. motagua. Separate parsimony and Bayesian analyses of the concatenated DNA sequences and simultaneous parsimony analyses of the morphology and DNA placed these species within the mexicanus group, D. bereai and D. melici as sister species, and D. gertschi in a different group from D. motagua. The phylogenetic relationships among them may be better resolved by the inclusion of additional species, particularly from Central America.

5. Acknowledgements

We thank T. Anton, A. Ballesteros, D. Barrales, L. Beltrán, P. Berea, R. Botero, M. Branstetter, V. Capovilla, H. Carmona, G. Casper, G. Contreras, M. Córdova, M. Correa, J. Cruz, C. Dúran, L. Esposito, G. Francke, N. Gómez, E. González, S. Grant, B. Hendrixson, V. Henriquez, J. Huff, A. Jaimes, S. Longhorn, T. López, J.M. Maes, K.J. McWest, J. Mendoza, R. Mercurio, E. Miranda, R. Monjaraz, H. Montaño, G. Montiel, I.G. Nieto, D. Ortiz, M. Paradiz, R. Paredes, J. Ponce, A. Quijano, Y. Rodriquez, K. Salastume, W.E. Savary, C. Savvas, W.D. Sissom, M.E. Soleglad, P. Sprouse, F. Torres, V. Torti, A. Valdez, X. Vázquez, G. Villegas, M. Villaseñor, C. Viquez, R.C. West, and E. Ythier for assisting with fieldwork and/or providing material for study and analysis; J. Coddington (USNM), J. Ponce (CAFBUM), M. Dávila (CALA), and R. Trujillo (MHN) for lending material from the collections in their care; O. Delgado, M. Mosier, P. Rubi and T. Sharma for generating DNA sequence data at the AMNH; O. Delgado, L. Esposito and L. Márquez for assisting C. Santibáñez with DNA sequencing; and A. Contreras, J. Morrone, H. Ochoterena, J. Ponce, and A. Zaldivar, for comments on an early draft of the manuscript. K. Klass and two anonymous reviewers for further improving the manuscript. Carlos Santibáñez thanks his family and Saida Chacon for support during this study; he was supported financially for his graduate studies by the Posgrado en Ciencias Biologicas of UNAM and Consejo Nacional de Ciencias y Tecnologia (CONACYT), and received a Col-
lections Study Grant (2011) and a Theodore Roosevelt Memorial Grant (2012) from the AMNH to support his visits to New York. Fieldwork in Mexico was conducted under scientific permit FAUT0175 from Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT), and partially supported by a grant from the Instituto Bioclon to O. Francke. Fieldwork and DNA sequencing were partially supported by U.S. National Science Foundation grants DEB 0228699 and DEB 0413453, and a grant from the Richard Lounsbery Foundation to L. Prendini.

6. References

Armas L.F., Trujillo R. 2009. Nueva especie de Diplocentrus Peters, 1861 (Scorpiones: Scorpionidae) de Guatemala. - Boletín Sociedad Entomológica Aragonesa 45: 67-72.
Bremer K. 1994. Branch support and tree stability. - Cladistics 10: 295-304.
Dimitrov D., Astrin J.J., Huber B.A. 2013. Pholcid spider molecular systematics revisited, with new insights into the biogeography and the evolution of the group. - Cladistics 29: 132-146.
DeBry, R.W. 2001. Improving interpretations of the decay index for DNA sequence data. - Systematic Biology 50: 742-752.
Farris J.S. 1970. Methods for computing Wagner trees. - Systematic Zoology 19: 83-92.
Folmer O., Black M.B., Hoch W., Lutz R.A., Vrijehock R.C. 1994. DNA primers for the amplification of mitochondrial Cytochrome c Oxidase subunit I from diverse metazoan invertebrates. - Molecular Marine Biology and Biotechnology 3: 294-299.
Francke O.F. 1977. Scorpions of the genus Diplocentrus from Oaxaca, Mexico (Scorpionida, Diplocentridae). - Journal of Arachnology 4: 145-200.
Francke O.F. 1978. Systematic revision of diplocentrid scorpions from circum-Caribbean lands. - Special Publications of the Museum, Texas Tech University 14: 1-92.
Francke O.F., Quijano-Ravell A. 2009. Una especie nueva de Diplocentrus (Scorpiones: Diplocentridae) del estado de Michoacán, México. - Revista Mexicana de Biodiversidad 80: 659-663.
Goloboff P.A. 1999. Analyzing large data sets in reasonable times: Solutions for composite optima. - Cladistics 15: 415-428.
Goloboff P.A., Farris J.S., Nixon K.C. 2008. TNT, a free program for phylogenetic analysis. - Cladistics 24: 774-786.
Hoffmann C.C. 1931. Monografias para la entomología médica de México. Monografia Num. 2, Los escorpiones de México. Primera parte: Diplocentridae, Chactidae, Vejovidae. - Anales del Instituto de Biología, Universidad Nacional Autónoma de México 2: 291-408.
Huelsenbeck J.P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. - Bioinformatics 17: 754-755.
Katoh K., Misawa K., Kuma K., Miyata T. 2002. MaFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. - Nucleic Acids Research 30: 3059-3066.
Katoh K., Kuma K., Тон H., Miyata T. 2005. MaFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33: 511-518.

Kocher T.D., Thomas W.K., Meyer A., Edwards S.V., Pääbo S., Villablanca F.X., Wilson A.C. 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. - Proceedings of the National Academy of Sciences, U.S.A. 86: 6196-6200.
Mattoni C.I., Ochoa J.A., Ojanguren-Affilastro A.A., Prendini L. 2012. Orobothriurus (Scorpiones: Bothriuridae) phylogeny, Andean biogeography, and the relative importance of genitalic and somatic characters. - Zoologica Scripta 41: 160-176.
Nixon K.C. 1999. The parsimony ratchet, a new method for rapid parsimony analysis. - Cladistics 15: 407-414.
Nixon K.C. 1999-2002. Winclada, version 1.00.08. Computer software and documentation. - Available via http://www.cladistics. com.
Nunn G.B., Theisen B.F., Christensen B., Arctander P. 1996. Sim-plicity-correlated size growth of the nuclear 28 S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. Journal of Molecular Evolution 42: 211-223.
Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. - Bioinformatics 19: 1572-1574.
Posada D. 2008. jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25: 1253-1256.
Prendini L. 2000. Phylogeny and classification of the superfamily Scorpionoidea Latreille 1802 (Chelicerata: Scorpiones): An exemplar approach. - Cladistics 16: 1-78.
Prendini L. 2001. Species or supraspecific taxa as terminals in cladistic analysis? Groundplans versus exemplars revisited. - Systematic Biology 50: 290-300.
Prendini L., Hanner R., DeSalle R. 2002. Obtaining, storing and archiving specimens and tissue samples for use in molecular studies. Pp. 176-248 in DeSalle R., Giribet G., Wheeler W.C. (eds), Methods and Tools in Biosciences and Medicine. Techniques in Molecular Evolution and Systematics. - Birkhäuser Verlag: Basel, Switzerland.
Prendini L., Crowe T.M., Wheeler W.C. 2003. Systematics and biogeography of the family Scorpionidae (Chelicerata: Scorpiones), with a discussion on phylogenetic methods. - Invertebrate Systematics 17: 185-259.
Prendini L., Weygoldt P., Wheeler W.C. 2005. Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): Evidence from behaviour, morphology and DNA. - Organisms, Diversity and Evolution 5: 203-236.
Sanger F., Nicklen S., Coulsen A.R. 1977. DNA sequencing with chain terminating inhibitors. - Proceedings of the National Academy of Sciences, U.S.A. 74: 5463-5468.
Santibáñez-López C.E., Francke O.F., Prendini L. 2013. Systematics of the keyserlingii group of Diplocentrus Peters, 1861 (Scorpiones: Diplocentridae), with descriptions of three new species from Oaxaca, Mexico. - American Museum Novitates 3777: 1-47.
Santibáñez-López C.E., Francke O.F., Prendini L. 2014. Kolotl, a new scorpion genus from Mexico (Scorpiones: Diplocentridae Karsch, 1880). - American Museum Novitates 3815: 1-28.
Simon C., Franke A., Martin A. 1991. The polymerase chain reaction: DNA extraction and amplification. Pp. 329-356 in Hewitt G., Johnson A., Young J. (eds), Molecular Techniques in Taxonomy. - Springer Verlag: New York.
Sissom W.D. 1990. Systematics, Biogeography, and Paleontology.

Pp. 64-160 in Polis G. (ed.), The Biology of Scorpions. Stanford University Press: Stanford, CA.
Sissom W.D., Fet V. 2000. Family Diplocentridae Karsch, 1880. Pp. 329-354 in Fet V., Sissom W.D., Lowe G., Braunwalder M.E., Catalog of the scorpions of the world (1758-1998). The New York Entomological Society: New York.
Sissom W.D., Walker A.L. 1992. A new species of Diplocentrus from Western Mexico (Scorpiones, Diplocentridae). - Southwestern Naturalist 37: 126-131.
Stahnke H.L. 1968. Some diplocentrid scorpions from Baja California del Sur, Mexico. - Proceedings of the California Academy of Sciences 35: 273-320.
Stockwell S.A. 1992. Systematic observations on North American Scorpionida with a key and checklist of the families and genera. - Journal of Medical Entomology 29: 407-422.
Swofford D.L., Maddison W.P. 1987. Reconstructing ancestral character states under Wagner parsimony. - Mathematical Biosciences 87: 199-229.
Swofford D.L., Maddison W.P. 1992. Parsimony, character-state reconstructions, and evolutionary inferences. Pp. 187-223 in Mayden R.L. (ed.), Systematics, historical ecology, and North American freshwater fishes. - Stanford University Press: Stanford, CA.
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. - Molecular Biology and Evolution 28: 2731-2739.
Teruel R. 2009. Los escorpiones diplocentrinos de Jamaica (Scorpiones: Scorpionidae: Diplocentrinae). - Boletin de la Sociedad Entomológica Aragonesa 44: 103-110.
Vachon M. 1974. Étude des caractères utilisés pour classer les familles et les genres de scorpions (Arachnides). 1. La trichobothriotaxie en arachnologie. Sigles trichobothriaux et types de trichobothriotaxie chez les scorpions. - Bulletin du Muséum National d'Histoire Naturelle, Paris 3: 857-958.
Wheeler W.C., Cartwright P., Hayashi C. 1993. Arthopod phylogeny: A combined approach. - Cladistics 9: 1-39.
Williams S.C., Lee V.F. 1975. Diplocentrid scorpions from Baja California Sur, Mexico (Scorpionida: Diplocentridae). - Occasional Papers of the California Academy of Sciences 115: 1-27.

7. Appendix 1

Terminal taxa, specimens and tissue samples used for cladistic analyses of 35 species in 6 diplocentrid scorpion genera. Material examined is deposited in the following collections: American Museum of Natural History (AMNH), New York, U.S.A.; Colección Aracnológica de la Facultad de Biología (CAFBUM), Universidad Michoacana de San Nicolás de Hidalgo; Morelia, Michoacán, Mexico; Colección Aracnológica "Luis de Armas", Instituto Tecnológico del Valle de Oaxaca (CALA), Oaxaca, Mexico; Colección Nacional de Arácnidos (CNAN), Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City; Museo de Historia Natural (MHN), Escuela de Biología, Universidad de San Carlos
de Guatemala, Guatemala City; U.S. National Museum of Natural History (USNM), Smithsonian Institution, Washington, DC, U.S.A. Tissue samples are deposited in the Ambrose Monell Cryocollection (AMCC) at the AMNH.

Outgroup

Heteronebo Pocock, 1899: Sixteen species are currently recognized in this genus, which occurs in the Caribbean and two islets between Somalia and the island of Socotra. Based on previous evidence that Heteronebo is basal to Diplocentrus and the other genera of Diplocentrinae (Prendini 2000), Heteronebo jamaicae Francke, 1978, an exemplar species from the Caribbean, was selected as the primary outgroup for analyses presented here. This species, mistakenly synonymized with Heteronebo scaber (Pocock, 1893) by Teruel (2009), is hereby revalidated.

1. Heteronebo jamaicae Francke, 1978: JAMAICA: St. Andrew's Parish: Bull Bay, $17^{\circ} 56.508^{\prime} \mathrm{N} 76^{\circ} 40.74^{\prime} \mathrm{W}, 17 \mathrm{~m}, 29 . v i i$. 2005, L. Esposito, hillside, lowland semi-deciduous forest with succulents, UV detection, 1 § (AMCC [LP 5131]); Yallahs, 10 km W, Quarry Lot, $17^{\circ} 55.3908^{\prime} \mathrm{N} 76^{\circ} 38.4288^{\prime} \mathrm{W}, 84 \mathrm{~m}, 30 . v i i .2005$, L. Esposito, degraded, lowland semi-deciduous forest, UV detection, $1 \widehat{\jmath}$ (AMCC [LP 5132]). St. Elizabeth Parish: Lover's Leap, 1 km E, $17^{\circ} 52.270^{\prime} \mathrm{N} 77^{\circ} 39.114^{\prime} \mathrm{W}, 24 . v i i .2005$, L. Esposito, evergreen drought-deciduous scrubland with succulents, high bluffs, UV detection, 8 §, 2 \& (AMNH), 1 juv. (AMCC [LP 5133]).

Tarsoporosus Francke, 1978: Five species are currently recognized in this genus, which is endemic to northern South America and closely related to Diplocentrus and Didymocentrus (Prendini 2000). The genus was represented by the type species in the analyses presented.
2. Tarsoporosus kugleri (Schenkel, 1932): VENEZUELA: don. E. Ythier, xi.2005, 1 § (AMCC [LP 5204]).

Bioculus Stahnke, 1968: Five species are recognized in this genus, which occurs on the Baja California Peninsula and mainland Mexico. Prendini (2000) recovered this genus as monophyletic with two alternative placements, sister to the Caribbean diplocentrid genera, or within Diplocentrus, rendering the latter paraphyletic. The genus was represented in the analyses by the type species and a second species from Baja California.
3. Bioculus caboensis (Stahnke, 1968): MEXICO: Baja California Sur: Municipio de La Paz: S of Todos los Santos, $23^{\circ} 25.793^{\prime} \mathrm{N}$ $110^{\circ} 11.602^{\prime}$ W, $81 \mathrm{~m}, 10 . v i i .2004$, O. Francke, W.E. Savary, E. González \& A. Valdez, 1 § (AMCC [LP 3125]). Municipio de Los Cabos: Cabo San Lucas, 15 miles E [$\left.23^{\circ} 01.359^{\prime} \mathrm{N} 109^{\circ} 43.491^{\prime} \mathrm{W}\right]$, 12.vi.2000, M.E. Soleglad, 1 \& (AMCC [LP 1796]); San Bartolo, $6 \mathrm{~km} \mathrm{SW}, 23^{\circ} 41.816^{\prime} \mathrm{N} 109^{\circ} 50.8^{\prime} \mathrm{W}, 100 \mathrm{~m}, 13 . v i i .2008$, E. González \& H. Montaño, 1 §, 3 juv. (AMNH), 1 juv. (AMCC [LP 8844]); Santiago, $23^{\circ} 26.408^{\prime} \mathrm{N} 109^{\circ} 43.577^{\prime} \mathrm{W}, 225 \mathrm{~m}, 9 . v i i .2004$, O. Francke, E. González \& A. Valdez, 1 §, 1 \& (AMCC [LP 3124]). Municipio de San Jose del Cabo: $22^{\circ} 56.143^{\prime} \mathrm{N} 109^{\circ} 48.757^{\prime} \mathrm{W}, 21 \mathrm{~m}$, 1.ii.2005, O. Francke \& H. Carmona, 1 \& (AMCC [LP 4749]).
4. Bioculus comondae Stahnke, 1968: MEXICO: Baja California Sur: Municipio de La Paz: Isla Espiritu Santo, Playa Bonanza $24^{\circ} 27.364^{\prime} \mathrm{N} 110^{\circ} 18.471^{\prime} \mathrm{W}, 0-50 \mathrm{~m}, 31 . v .2008$. I.G. Nieto \& E. González, 1 juv. (AMCC [LP 8683]); Las Cruces, 4 km NW, $24^{\circ} 13.511^{\prime} \mathrm{N} 110^{\circ} 07.410^{\prime} \mathrm{W}, 31 \mathrm{~m}, 24 . v i .2008$, E. González \& H.

Montaño, 1 đ (AMCC [LP 8679]); La Paz, ca. 10 km SE on BCS 286 to San Juan de los Planes, $24^{\circ} 08.433^{\prime} \mathrm{N} 110^{\circ} 15.333^{\prime} \mathrm{W}, 106 \mathrm{~m}$, 9.vii.2005, L. Prendini \& R. Mercurio, 1 đ̋ (AMCC [LP 4731]); La Paz, 18 km SE, $24^{\circ} 02.765^{\prime} \mathrm{N} 110^{\circ} 08.865^{\prime} \mathrm{W}, 625 \mathrm{~m}, 8 . v i i .2004$, O. Francke, E. González \& A. Valdez, 1 juv. (AMCC [LP 3123]); Libramiento to Pichilingue marker km 4, by Termoelectrica Punta Prieta, $24^{\circ} 12.843^{\prime} \mathrm{N} 110^{\circ} 16.214^{\prime} \mathrm{W}, 105 \mathrm{~m}, 23 . v i .2008$, M. Correa, I.G. Nieto \& E. González, 1 \& (AMCC [LP 8680]); Microwave antenna, La Paz to Pichilingue, $24^{\circ} 07.872^{\prime} \mathrm{N} 110^{\circ} 16.987^{\prime} \mathrm{W}, 224 \mathrm{~m}$, 9.vi.2008, I.G. Nieto \& E. González, 1 \& (AMCC [LP 8686]); San Evaristo, $5 \mathrm{~km} \mathrm{~S}, 24^{\circ} 52.901^{\prime} \mathrm{N} 110^{\circ} 41.404^{\prime} \mathrm{W}, 5-50 \mathrm{~m}, 12 . v i i .2008$, E. González \& H. Montaño, 1 ठ (AMCC [LP 8836]). Municipio de Loreto: Loreto, ca. 8 km S along gravel road to San Javier, from junction with Route $1,24^{\circ} 13.511^{\prime} \mathrm{N} 110^{\circ} 07.410^{\prime} \mathrm{W}, 31 \mathrm{~m}, 8 . v i i .2005$, L. Prendini, E. González \& W.E. Savary, 2 juv. (AMCC [LP 4738]).

Didymocentrus Kraepelin, 1905: Ten species are currently recognized in this genus. Francke (1978) considered it distinct from Diplocentrus and recognized two groups, the lesueurii group, from the Caribbean islands, and the nitidus group, from Central America. Although Prendini (2000) recovered the monophyly of Didymocentrus, the phylogenetic placement of the two exemplar species included in the analysis rendered Diplocentrus paraphyletic. In the present analysis, we included two exemplar species of Didymocentrus, the type species, representing the lesueurii group, and a species from Central America, representing the nitidus group.
5. Didymocentrus krausi Francke, 1978: NICARAGUA: Granada: Municipio de Granada: Domitila $\left[11^{\circ} 42^{\prime} \mathrm{N} 85^{\circ} 55^{\prime} \mathrm{W}\right]$, 55 m , 27.v.2002, J.M. Maes, 1 (AMCC [LP 1987]). León: Municipio de El Jicaral: San Rafael, road to Matagalpa, $12^{\circ} 40^{\prime} 35^{\prime \prime} \mathrm{N} 86^{\circ} 25^{\prime} 37^{\prime \prime}$ W, 110 m, 29.xi.2007, C. Viquez \& J. Mata, on slopes, 1 juv. + (AMCC [LP 8590]). Municipio de La Paz Centro: Volcán Momotombo, El Cardón, $12^{\circ} 24^{\prime} 57^{\prime \prime} \mathrm{N} 86^{\circ} 29^{\prime} 16.8^{\prime \prime} \mathrm{W}, 55 \mathrm{~m}, 2 . x i i .2007$, C. Viquez \& J. Mata, volcanic rock outcrop in forest, 1 juv. \& (AMCC [LP 8591]). Municipio de Nagarote: Carretera vieja a León, $12^{\circ} 09^{\prime} 41^{\prime \prime} \mathrm{N}$ $86^{\circ} 39^{\prime} 35^{\prime \prime} \mathrm{W}, 58 \mathrm{~m}, 24 . x i .2007$, C. Viquez \& J. Mata, in stockbreeding ranch near road, 1 juv. $\begin{gathered}\text { た (AMCC [LP 8589]). }\end{gathered}$
6. Didymocentrus lesueurii (Gervais, 1844): MARTINIQUE: E of Anses-D'Arlet, 6.5 km W of Le Diamant, $14^{\circ} 29.627^{\prime} \mathrm{N}$ $61^{\circ} 04.267^{\prime} \mathrm{W}, 43 \mathrm{~m}, 7 . x i i .2004$, J. Huff, scrub forest with little old growth, hand collected under rocks and garbage, 1 §, 3 , 19 juv. (AMNH), 1 juv. (AMCC [LP 3638]); Le Diamant, just S, $14^{\circ} 28.832^{\prime} \mathrm{N} 61^{\circ} 01.88^{\prime} \mathrm{W}, 355 \mathrm{~m}, 7 . x i i .2004$, J. Huff, under rocks and garbage at edge of road, 2 , 1 juv. (AMNH), 1 juv. (AMCC [LP 3639]).

Ingroup

Kolotl Santibáñez-López, Francke \& Prendini, 2014: SantibáÑezLópez et al. (2014) created a new genus to accommodate two Mexican diplocentrid species, previously placed in Diplocentrus, which rendered the latter paraphyletic in the analyses presented here.
7. Kolotl magnus (Beutelspacher \& López-Forment, 1991): MEXICO: Guerrero: Municipio de Acapulco de Juárez: Cumbres de Llano Largo, $16^{\circ} 49.505^{\prime} \mathrm{N} 99^{\circ} 49.999^{\prime} \mathrm{W}, 371 \mathrm{~m}, 19 . v i .2006$, O. Francke, H. Montaño \& A. Ballesteros, 3 juv. (CNAN), 1 juv. (AMCC [LP 7029]); Puerto Marquéz [1647.689N $\left.99^{\circ} 49.239^{\prime} \mathrm{W}\right]$, W. López-Forment, 1 juv. (CNAN-S00712); Puerto Marquéz, 2 km W [16º48.984'N $\left.99^{\circ} 50.780^{\prime} \mathrm{W}\right]$, 28.v.1974, 1 \& (CNAN-S00710),

8．vii．1974，W．J．Mautz，at entrance of crevice in granite boulder， holotype \uparrow（CNAN－T0122），juv．§ paratype（CNAN－T0123）， 10．vii．1974，W．López－Forment， 1 \＆（CNAN－S00713）；Puerto Marquéz， 4 km N ［1649．717’N 9949．255’W］，5．vii．1975，W． López－Forment， 2 juv．（CNAN－S00714）；Puerto Marquéz， 5 km W ［ $\left.16^{\circ} 49.400^{\prime} \mathrm{N} 99^{\circ} 51.594^{\prime} \mathrm{W}\right]$ ，21．vi．1985，W．López－Forment， 1 q （CNAN－S00711）．

8．Kolotl poncei（Francke \＆Quijano－Ravell，2009）：MEXI－ CO：Michoacan：Municipio de La Huacana：El Vado，km 17 road Zicuiran to Churumuco， $18^{\circ} 48.908^{\prime} \mathrm{N} 101^{\circ} 54.976^{\prime} \mathrm{W}, 20 . v .2007$, O．Francke，J．Ponce，A．Quijano，M．Villaseñor \＆A．Ballesteros， holotype む， 1 §， 3 ¢（ 1 with 24 offspring）， 4 juv．§， 4 juv．q paratypes（CNAN－T0392）， 1 juv．（AMCC［LP 7030］），1．xi．2007，J． Ponce，A．Quijano \＆M．Villaseñor， 1 §（CAFBUM），30．vi．2008， O．Francke，J．Ponce，A．Quijano \＆H．Montaño， $1 \delta^{\lambda}, 7$ juv $\delta^{\lambda}, 3 q$ juv．（CNAN）， 1 §， 1 中（AMNH）．

Diplocentrus Peters，1861：This genus presently comprises 59 spe－ cies，although several may eventually be synonymized．Prend－ ini（2000）recovered this genus as paraphyletic with respect to Didymocentrus．Two groups were recognized by Santibáñez－López et al．（2013），the keyserlingii group，comprising 10 species，and the mexicanus group，comprising 45 ．The present study included 9 spe－ cies from the keyserlingii group and 18 from the mexicanus group， including the type species of the genus，Diplocentrus mexicanus Peters， 1861.

9．Diplocentrus anophthalmus Francke，1978：MEXICO：Yu－ catán：Municipio de Opichen：Actun Chukum［2033．070＇N 8954．724’W， 93 m］，29．xi．1974，J．Reddell，D．McKenzie，S．Wiley \＆R．W．Mitchell，holotype $q(A M N H)$ ；Actun Xpukil， $20^{\circ} 33.070^{\prime} \mathrm{N}$ 8954．724 ${ }^{\prime}$ W， 93 m，iii．2010，M．Paradiz， 1 subad．\uparrow（CNAN）， 1 subad．\＆［leg］（AMCC［LP 10980］），cave，under stone．

10．Diplocentrus bereai Armas \＆Martín－Frías，2004：MEXI－ CO：Veracruz：Municipio de Actopan： $19^{\circ} 30^{\prime} \mathrm{N} 96^{\circ} 36^{\prime} \mathrm{W}, 5 . \mathrm{iii} .2003$ ， P．Berea， 2 中（CNAN－S03098），28．iii．2004，P．Berea， 1 §（CNAN－ S03184），23．iv．2003，P．Berea， 1 \＆（CNAN－S03074），24．v．2003， P．Berea，holotype δ^{λ}（CNAN）；Buenavista［1930＇N $96^{\circ} 36^{\prime} \mathrm{W}$ ］， 15．v．2005，P．Berea， 4 q（CNAN－S03187）；El Conejito，road to Jiba－ ro $19^{\circ} 26.197^{\prime} \mathrm{N} 96^{\circ} 36.470^{\prime} \mathrm{W}, 291 \mathrm{~m}, 6 . \mathrm{v} .2006$ ，O．Francke，P．Berea \＆A．Ballesteros， 1 §̂， 1 \＆（CNAN－S03073）， 1 juv．（AMCC［LP $6532]$ ）；Los Ídolos， $19^{\circ} 24.154^{\prime} \mathrm{N} 96^{\circ} 31.091^{\prime} \mathrm{W}$ ，1．x．2003，P．Berea， 1 ठ（CNAN－S03188），18．vi．2004，P．Berea， 1 §（CNAN－S03189）； Paso de Milpa， $1^{\circ} 26.237^{\prime} \mathrm{N} 96^{\circ} 36.490^{\prime} \mathrm{W}, 280 \mathrm{~m}, 2.1 i i .2004$ ，P．Be－ rea， 1 ठ（CNAN－S03190）， 1 \＆（AMCC［LP 6369］）．

11．Diplocentrus coddingtoni Stockwell，1988：HONDURAS： Departamento Atlantida：La Ceiba［15²41．37’N $86^{\circ} 54.204^{\prime} \mathrm{W}$ ］， 1920，W．L．Mann，holotype $\widehat{\text { O}}, 4$ paratypes；La Ceiba，Pico Bonito Lodge，property with cacao close to lodge， $15^{\circ} 41.368^{\prime} \mathrm{N}$ $86^{\circ} 54.206^{\prime}$ W， 124 m，2．x．2008，C．Viquez \＆M．Branstetter， 1 juv．\＆（AMCC［LP 9169］）；Isla Corlum Grande，2．xii．1997， 1 q （CNAN－S03003）；Pico Bonito Natural Park，La Ceiba， $15^{\circ} 37^{\prime} 14^{\prime \prime} \mathrm{N}$ $86^{\circ} 51^{\prime} 59^{\prime \prime}$ W，28．viii．2013，C．Santibáñez，S．Longhorn，K．Salas－ tume \＆V．Henriquez， 1 §， 1 ¢， 2 subad．\uparrow ， 2 juv．（AMNH）．

12．Diplocentrus colwelli Sissom \＆Fritts，1996：MEXICO： Nuevo León：Municipio de Aramberri：San Juanito de Jésus， $24^{\circ} 26.25^{\prime}$ N $99^{\circ} 57.15^{\prime} \mathrm{W}, 2319 \mathrm{~m}, 26 . v i i .2006$ ，O．Francke，W．D． Sissom，B．Hendrixson，K．McWest，S．Grant，C．Durán，A．Jaimes， M．Córdova \＆A．Ballesteros， 1 ठ（CNAN）， $1 \delta, 1 \not \subset$（AMNH）， 1 ex．［leg］（AMCC［LP 6604］）．Municipio de Santa Catarina：Cañon
de la Huasteca， $25^{\circ} 36.874^{\prime} \mathrm{N} 100^{\circ} 28.531^{\prime} \mathrm{W}, 728 \mathrm{~m}, 24 . v i i .2006$ ， O．Francke，W．D．Sissom，B．Hendrixson，K．McWest，S．Grant，C． Durán，A．Jaimes，M．Córdova \＆A．Ballesteros， 25 §， 3 q， 3 juv． （AMNH）， 25 §， 3 q， 2 juv．（CNAN－Sc1538）， 13 §（CAS）， 1 q （AMCC［LP 6483］）；La Huasteca Recreation Park，Santa Catarina Mountains，Monterrey， 723 m，10．vi．1996，R．C．West， 1 §（AMCC ［LP 6218］）．

13．Diplocentrus coylei Sissom \＆Fritts，1996：MEXICO：Es－ tado de México：Municipio de Malinalco：Chichicasco， $18^{\circ} 51.369^{\prime} \mathrm{N}$ $99^{\circ} 28.123^{\prime} \mathrm{W}, 1374 \mathrm{~m}, 25 . v i i .2002$ ，E．González， 1 §， 2 subad．đ （AMCC［LP 2236］）．Municipio de Tonatico：Tonatico，outside Es－ trella cave，near viewpoint， $18^{\circ} 44.740^{\prime} \mathrm{N} 99^{\circ} 37.821^{\prime} \mathrm{W}, 1594 \mathrm{~m}$ ， 15．ix．2011，J．Mendoza，R．Monjaraz，D．Barrales \＆F．Torres， 2 $\uparrow(\mathrm{CNAN}), 1 \uparrow[\mathrm{leg}]$（AMCC［LP 11474］）．Guerrero：Municipio de Buenavista de Cuellar：Casino de la Unión， $2 \mathrm{~km} \mathrm{~S}, 18^{\circ} 35.53^{\prime} \mathrm{N}$ $99^{\circ} 28.91^{\prime}$ W， 1178 m，28．viii．2009，O．Francke，T．López，C．Santi－ báñez \＆A．Valdez， 2 q， 6 juv．（CNAN）， 1 juv．［leg］（AMCC［LP 11051］）， 1 juv．［leg］（AMCC［LP 11053］）．Municipio de Iguala de la Independencia：Iguala de la Independencia $\left[18^{\circ} 21^{\prime} \mathrm{N} 99^{\circ} 33.6^{\prime} \mathrm{W}\right]$ ， vi．1961， 1 \＆（CNAN）；La Cumbre， $18^{\circ} 24.031^{\prime} \mathrm{N} 99^{\circ} 29.120^{\prime} \mathrm{W}$ ， 1212 m，28．viii．2009，O．Francke，C．Santibáñez \＆E．Miranda， thorn forest，on the ground，UV light， 1 juv．（CNAN）， 1 juv．［leg］ （AMCC［LP 11033］）， 1 juv．［leg］（AMCC［LP 11050］）．Municipio de Ixcateopán de Cuahutemoc：Ixcateopán， $2 \mathrm{~km} \mathrm{~S}, 18^{\circ} 30.230^{\prime} \mathrm{N}$ $99^{\circ} 46.656^{\prime} \mathrm{W}, 1930 \mathrm{~m}, 21 . i v .2012$ ，J．Mendoza，R．Monjaraz，D． Ortiz \＆G．Contreras， $1 q$（CNAN）， 1 \＆［leg］（AMCC［LP 11480］）． Municipio de Picaya：Cacahuamilpa［18²4．6＇N $\left.99^{\circ} 20.4^{\prime} \mathrm{W}\right], 1520$ m，11．viii．1984，R．Ríos， 1 §， 1 \＆， 2 juv．（CNAN），15．vii．2001， M．Córdova \＆A．Burgos， 1 \＆（CNAN）；Gruta de Cacahuamilpa， 8．vi．1982，F．Coyle， 1 juv．paratype（AMNH）；Cacahuamilpa， 4 mi．W，summit［ $\left.18^{\circ} 41^{\prime} \mathrm{N} 99^{\circ} 34^{\prime} \mathrm{W}\right]$ ，3．ix．1966，J．\＆W．Ivie， $1 \delta^{\top}$ ， 1 ， 1 juv．paratypes（AMNH）．Municipio de Taxco de Alarcon： Las Granadas［1857＇N 99ํ．51＇W］，12．vii．1980，E．Martin \＆R． Garcia， 1 §， 1 q paratypes（AMNH）．Municipio de Tetipac：Dos Bocas［18³9．6＇N 99³0．6＇W］，vi．1946， $10^{\top}, 1 q$（CNAN）；Iguala $18^{\circ} 21^{\prime} \mathrm{N} 99^{\circ} 33.6^{\prime} \mathrm{W}$ ，vi．1961， 1 q（CNAN）．Morelos：Municipio de Amacuzac：Huajintlán， $18^{\circ} 36.6^{\prime} \mathrm{N} 99^{\circ} 25.8^{\prime} \mathrm{W}, 1510 \mathrm{~m}, 4 . \mathrm{ix} .2004$ ， M．Córdova \＆A．Gotilla， 1 q（CNAN）．Municipio de Coatlán del Rio：El Oyanco， $18^{\circ} 43.8^{\prime} \mathrm{N} 99^{\circ} 25.8^{\prime} \mathrm{W}, 1022 \mathrm{~m}, 6 . v i i i .2004$ ， M．Córdova \＆O．Sotelo， 1 \＆（CNAN－S03005）．Municipio de Miacatlán：Palpan， $18^{\circ} 51^{\prime} \mathrm{N} 99^{\circ} 25.2^{\prime} \mathrm{W}, 1587 \mathrm{~m}, 7$. viii．2004，M． Córdova \＆O．Vázquez， $1 \widehat{J}^{\lambda}, 4$ ， 10 juv．（CNAN）．Municipio de Tlaquiltenango：El Comal，border between Morelos \＆Guer－ rero， $18^{\circ} 27.086^{\prime} \mathrm{N} 99^{\circ} 17.139^{\prime} \mathrm{W}, 1749 \mathrm{~m}, 13 . v i .2007$ ，O．Francke， J．Ponce，M．Córdova，H．Montaño，L．Beltrán \＆A．Ballesteros， 6

 （AMCC［LP 7031］）．

14．Diplocentrus cozumel Armas \＆Beutelspacher，1998：ME－ XICO：Quintana Roo：Municipio de Benito Juárez：Cancun，Hotel Moon Palace， $20^{\circ} 59^{\prime} 17.0^{\prime \prime} \mathrm{N} 86^{\circ} 50^{\prime} 06.4^{\prime \prime} \mathrm{W}, 25 \mathrm{~m}, 26 . i v .2005$ ，H． Carmona， 1 leg（AMCC［LP 4102］）；Cozumel，28．xii．1959， 3 ठ， 1 \＆， 2 juv．（CNAN－Sc1542），12．xii．1990，C．Beutelspacher， 2 q， 3 subad．$\widehat{\jmath}, 2$ subad．+3 juv．（CNAN－Sc1543）；Cozumel Island， San Gervancio，Mayan ruins，17．iii．2004，J．Huff， $1 \delta^{\lambda}, 1$ ， 4 juv． （AMCC［LP 2672－2676］）．

15．Diplocentrus diablo Stockwell \＆Nilsson，2001：U．S．A．： Texas：Starr County：Santa Cruz，18．viii．1985，J．A．Nilsson，holo－

1 \& paratypes (AMNH), $26^{\circ} 23.015^{\prime} \mathrm{N} 98^{\circ} 47.091^{\prime} \mathrm{W}, 25 . v i i i .2006$, T. Anton, G. Casper, V. Torti \& W.D. Sissom, 3 juv. (AMCC [LP 6386])
16. Diplocentrus formosus Armas \& Martín-Frías, 2003: MEXICO: Oaxaca: Distrito de Tehuantepec: Municipio de Asunción Ixtaltepec: Chivela [$\left.16^{\circ} 42.813^{\prime} \mathrm{N} 94^{\circ} 59.827^{\prime} \mathrm{W}\right], 210 \mathrm{~m}, 30 . \mathrm{v}$. 1962, J. Martinez, 1 ठ, 1 ¢ (CNAN); Nizanda, $16^{\circ} 39.4902^{\prime} \mathrm{N}$ $95^{\circ} 00.6342^{\prime} \mathrm{W}, 99 \mathrm{~m}, 15 . i x .2009$, R. Paredes, C. Santibáñez \& A. Valdez, deciduous forest, in burrow entrance, UV light detection, $9 \not q(\mathrm{CNAN}), 1 \not \subset[\mathrm{leg}]$ (AMCC [LP 10979]); Santo Domingo Tehuantepec $\left[16^{\circ} 19.650^{\prime} \mathrm{N} 95^{\circ} 17.273^{\prime} \mathrm{W}\right], 80 \mathrm{~m}, 9$. vii.2004, P. Berea, 4 §, 11 ¢ (CNAN).
17. Diplocentrus gertschi Sissom \& Walker, 1992: MEXICO: Nayarit: Municipio de Tepic: Jésus María Corte, 4 km N, 2 km along gravel road E of main paved road, ca. 30 km N Tepic, $21^{\circ} 45.203^{\prime} \mathrm{N}$ $104^{\circ} 51.213^{\prime}$ W, 126 m, 29.vii.2005, E. González \& R. Mercurio, 1 q (AMCC [LP 4707]). Municipio de Tuxpam: Microwave tower Peñitas, ca. 10 km E Tuxpan, $21^{\circ} 55.843^{\prime} \mathrm{N} 105^{\circ} 12.805^{\prime} \mathrm{W}, 230 \mathrm{~m}$,
 (AMCC [LP 4706]).
18. Diplocentrus hoffmanni Francke, 1977: MEXICO: Oaxa$c a$: Distrito de Etla: Municipio de San Francisco Telixtlahuaca: Telixtlahuaca, 6 mi . N [$\left.17^{\circ} 17.667^{\prime} \mathrm{N} 96^{\circ} 54.25^{\prime} \mathrm{W}\right], 7050 \mathrm{ft}$, 26.vii. 1966, C.M. Bogert, under rocks in moderately dry area with oak and juniper, paratype (AMNH); Telixtlahuaca, 6 km N , $17^{\circ} 20.367^{\prime} \mathrm{N} 96^{\circ} 56.121^{\prime} \mathrm{W}, 1915 \mathrm{~m}, 22 . v i i .2002$, O. Francke, E. González \& J. Ponce, SE slope, dry scrub, 1 §, 1 \& (AMCC [LP 2036]), 1 o (CNAN). Municipio de Santiago Tenango: near Tejocote $\left[17^{\circ} 14^{\prime} \mathrm{N} 97^{\circ} 00^{\prime} \mathrm{W}\right], 7800 \mathrm{ft}$, summer 1963, C.M. Bogert, under logs, holotype δ^{λ}, paratype q (AMNH); Tejocote, 31 mi . NW Oaxaca city, 7600 ft , 9.ix.1962, M.R. Bogert, paratype đ (AMNH). Distrito de Tlacolula: Municipio de San Pablo Mitla: Mitla, 15 km E, $16^{\circ} 56.606^{\prime} \mathrm{N} 96^{\circ} 17.114^{\prime} \mathrm{W}$, 2081 m, 18.vii.2007, O. Francke, H. Montaño, A. Valdez, A. Ballesteros \& C. Santibáñez, pine-oak woodland, 1 § (CNAN), 1 subad. § (AMCC [LP 7615]). Distrito de Zimatlán: Municipio de Magdalena Mixtepec: Magdalena Mixtepec, $16^{\circ} 52.824^{\prime} \mathrm{N} 96^{\circ} 51.056^{\prime} \mathrm{W}, 1710 \mathrm{~m}, 19-20 . v i .2006$, O. Francke, G. Villegas, H. Montaño, C. Santibáñez \& A. Valdez, 1 §, 4 ㅇ, 4 subad. \uparrow, 2 juv. (AMNH), 2 §, 3 ㅇ, 4 subad. $\uparrow, 2$ juv. (CNAN), 2 中 (AMCC [LP 6599]).
19. Diplocentrus jaca Armas \& Martín-Frías, 2000: MEXICO: Oaxaca: Distrito de Tuxtepec: Municipio de San Jose Rio Manso: Cerro Chango, 6.iii.2009, J. Cruz, holotype đ̋ (CNAN), 2 \& (CNAN-S03484). Municipio de Santa María Jacatepec: Jacatepec, 21.vi.1977, M. Varela; Vega de Sol, $17^{\circ} 48.759^{\prime} \mathrm{N} 96^{\circ} 12.913^{\prime} \mathrm{W}$, 46 m, 5.vi.2008, O. Francke, R. Botero, C. Santibáñez \& A. Valdez, 1 §, 4 ¢ (CNAN-S03486), 1 ex. [leg] (AMCC [LP 9518]).
20. Diplocentrus keyserlingii Pocock, 1889: MEXICO: Oaxaca: Distrito de Etla: Municipio de Santa María Peñoles: Santa Catarina Estetla, $17^{\circ} 01.6^{\prime} \mathrm{N} 97^{\circ} 05.766^{\prime} \mathrm{W}, 20 . i x .2007$, P. Lara, $1 \sigma^{\star}$ (CALA). Municipio de Santiago Tenango: near Tejocote $\left[17^{\circ} 14^{\prime} \mathrm{N}\right.$ $\left.97^{\circ} 00^{\prime} \mathrm{W}\right], 7800 \mathrm{ft}$, summer 1963, C.M. Bogert, under logs, holotype §, paratype $\widehat{\delta}$ [Diplocentrus reticulatus Francke, 1977] (AMNH). Distrito de Ixtlán de Juárez: Municipio de Santa Catarina Ixtepeji: El Punto, road to Ixtlán de Juárez [$\left.17^{\circ} 13.30^{\prime} \mathrm{N} 96^{\circ} 35.03^{\prime} \mathrm{W}\right]$, 19.viii.1961, C.M. \& M.R. Bogert, paratype đ (AMNH). Distrito de Zaachila: Municipio de Santa Inés del Monte: Santa Inés del Monte, $16^{\circ} 56.442^{\prime} \mathrm{N} 96^{\circ} 51.629^{\prime} \mathrm{W}, 2270 \mathrm{~m}, 19.1 \mathrm{ix} .2009$, R. Pare-des-León, C. Santibáñez, A. Valdez \& J. Cruz, 1 §, 5 juv. (CNAN),

1 juv. [leg] (AMCC [LP 11052]); Santa Inés del Monte, 3 km E, $16^{\circ} 56.445^{\prime} \mathrm{N} 96^{\circ} 51.6312^{\prime} \mathrm{W}, 2665 \mathrm{~m}, 12 . x i i .2005$, O. Francke, H. Montaño, C. Santibáñez \& A. Valdez, $1 \delta^{\lambda}, 1 q$ (CNAN), 2 q (AMNH), 1 \& (AMCC [LP 6517]).
21. Diplocentrus kraepelini Santibáñez-López, Francke \& Prendini, 2013: MEXICO: Oaxaca: Distrito de Coixtlahuaca: Municipio de San Cristóbal Suchixtlahuaca: Km 2 road San Cristóbal Suchixtlahuaca to Santiago Tejupan, $17^{\circ} 42.240^{\prime} \mathrm{N}$ $97^{\circ} 23.667^{\prime}$ W, 2290 m, 28.vi.2006, O. Francke, G. Villegas, H. Montaño \& A. Valdez, holotype $\begin{gathered}\text { (CNAN-T0671), } 2 \text { §, } 3 \text { \&, } 2\end{gathered}$ subad. $\uparrow, 2$ juv. paratypes (AMNH), $1 \delta^{\AA}, 3 \uparrow, 1$ subad. $\delta^{\AA}, 2$ juv. paratypes (CNAN-T0672), 1 \& paratypes (AMCC [LP 6426]); Suchixtlahuaca, $8 \mathrm{~km} \mathrm{NE}, 17^{\circ} 42.124^{\prime} \mathrm{N} 97^{\circ} 23.776^{\prime} \mathrm{W}, 2030 \mathrm{~m}$, 25.iii.2010, O. Francke, A. Valdez, C. Santibáñez \& J. Cruz, oak forest, under rock, daytime rock rolling, 1 subad. + paratype (CNAN), 1 subad. \& paratype [leg] (AMCC [LP 10973]). Distrito de Teposcolula: Municipio de San Bartolo Soyaltepec: Caballo Blanco [$17^{\circ} 35.432^{\prime} \mathrm{N} 97^{\circ} 18.414^{\prime} \mathrm{W}$], 12.vii.1963, G. Sludder, under logs, 1 ठす (AMNH).
22. Diplocentrus lindo Stockwell \& Baldwin, 2001: U.S.A.: Texas: Jeff Davis County: Davis Mountains State Park, 20.vi.1970, M.A. Cazier, L. Draper, O.F. Francke, $1 \delta^{\lambda}, 1+$ paratypes (AMNH). Terrell County: Sanderson, 1.viii.2004, B.R. Tomberlin \& S.J. Burchfield, 1 § (AMCC [LP 3078]).
23. Diplocentrus melici Armas, Martín-Frías \& Berea, 2004: MEXICO: Veracruz: Municipio de Actopan: Los Ídolos, $19^{\circ} 24.517^{\prime} \mathrm{N}$ $96^{\circ} 31.0^{\prime} \mathrm{W}, 6 . i i i .2004$, P. Berea, 1 juv. q (CNAN-S03265), 18.vi.2004, P. Berea, holotype đ (CNAN), 1.v.2006, P. Berea, 1 ठ (AMCC [LP 6380]), 1.viii.2006, P. Berea, 1 q (CNAN-S03538), 4 § 36 ? , 4 juv. (CNAN-S03191), 5.iv.2006, O. Francke, P. Berea \& A. Ballesteros, 23 \& , 12 subad. , 10 juv. (CNAN-Sc1595), 4 subad. đ̃ (CNAN-Sc1593), 1 juv. (AMCC [LP 6546]).
24. Diplocentrus mexicanus Peters, 1861: MEXICO: Oaxa$c a$: Distrito de Etla: Municipio de Santiago Nacaltepec: El Moral, $2 \mathrm{mi} . \mathrm{N}$, neotype $\widehat{\delta}, 1$ (AMNH). Distrito de Ixtlán de Juárez: Municipio de Ixtlán de Juárez: Guelatao, Hydroelectric plant, Xia, 28.iv.1960, 1 \& (CNAN-Sc1578); Xía, Guelatao, 1.vii.1962, 2 ¢ (CNAN-Sc1573); Km 171 road 175 Tuxtepec to Ixtlán de Juárez $17^{\circ} 17.835^{\prime} \mathrm{N} 96^{\circ} 32.577^{\prime} \mathrm{W}, 2006 \mathrm{~m}, 14 . v i .2007$, C. Santibáñez \& A. Valdez, 2 §̉, 1 q, 1 subad. $q, 1$ juv. (CNAN-Sc1582), 16.iii.2008, C. Santibáñez, A. Valdez \& H. Montaño, 1 q (CNANSc1577). Municipio de San Juan Atepec: San Juan Atepec, 2 km NW, $17^{\circ} 25.76^{\prime}$ N $96^{\circ} 33.31^{\prime} \mathrm{W}, 1849 \mathrm{~m}, ~ O$. Francke, C. Santibáñez \& A. Quijano, 1 q, 2 juv. $\overbrace{}^{\lambda}$ (CNAN-Sc1579). Municipio de San Pablo Macuiltinguis: Campamento recreativo de San Pablo Macuiltinguis, $17^{\circ} 32.981^{\prime} \mathrm{N} 96^{\circ} 34.478^{\prime} \mathrm{W}, 1983 \mathrm{~m}$, 23.vii.2007, O. Francke, C. Santibáñez, H. Montano, A. Valdez \& A. Ballesteros,
 1 juv. (AMCC [LP 7674]).
25. Diplocentrus mitlae Francke, 1977: MEXICO: Oaxaca: Distrito de Tlacolula: Municipio de San Pablo Villa de Mitla: Mitla, $6 \mathrm{mi} . \mathrm{N}\left[16^{\circ} 55.252^{\prime} \mathrm{N} 96^{\circ} 21.997^{\prime} \mathrm{W}\right], 1889 \mathrm{~m}, 1 . i x .1962$, M.R. Bogert, holotype đo (AMNH); San José del Paso, 1 km N, $16^{\circ} 55.935^{\prime} \mathrm{N} 96^{\circ} 17.220^{\prime} \mathrm{W}, 1880 \mathrm{~m}, 17.1 .2007$, C. Santibáñez \& N. Gómez, 2 q, 1 juv. (CNAN); San José del Paso, 2 km N, $16^{\circ} 55.735^{\prime} \mathrm{N} 96^{\circ} 17.867^{\prime} \mathrm{W}, 1937 \mathrm{~m}, 15 . i x .2009$, R. Paredes, C. Santibáñez \& A. Valdez, 2 §, 2 juv. (CNAN), 1 subad. ठ [leg] (AMCC [LP 11034]); San Juan, 2 km E, 14.ix.2009, A. Valdez, C. Santibañez \& R. Paredes, $1 \delta^{\Uparrow}$ [leg] (AMCC [LP 11465]).

26．Diplocentrus motagua Armas \＆Trujillo，2009：GUATE－ MALA：Departamento Zacapa：Municipio de Rio Hondo：Aldea Casas de Pinto， $15^{\circ} 01.403^{\prime} \mathrm{N} 89^{\circ} 36.82^{\prime} \mathrm{W}, 195 \mathrm{~m}, 26 . v i .2008$ ，R． Trujillo \＆C．Avila，holotype ${ }^{\lambda}$（MHN）；Aldea Casas de Pinto，near turn off for Zacapa at Rio Hondo， $15^{\circ} 01.618^{\prime} \mathrm{N} 89^{\circ} 36.953^{\prime} \mathrm{W}, 77 \mathrm{~m}$ ， 13．vii．2006，J．Huff，C．Viquez \＆D．Ortiz， 1 §， 1 q， 2 subad．$q, 1$ juv．（AMNH）， 4 juv．（AMCC［LP 5997］）， 1 §， 3 juv．（AMCC［LP 5998］）．

27．Diplocentrus peloncillensis Francke，1975：U．S．A．：New Mexico：Hidalgo County：Geronimo Pass，Peloncillo Mountains， Coronado National Forest， $31^{\circ} 30.885^{\prime} \mathrm{N} 109^{\circ} 01.510^{\prime} \mathrm{W}, 1754 \mathrm{~m}$ ， 13－14．ix．2002．L．Prendini，L．Esposito \＆Y．Rodriguez，oak－pine scrub on rocky hills；collected at night with UV and during day by turning stones， $1 \delta^{\lambda}, 1 q$（AMNH）， 1 juv．（AMCC［LP 2132］）， 3 juv． （AMCC［LP 2139B］）， 1 juv．（AMCC［LP 2140A］）．

28．Diplocentrus rectimanus Pocock，1899：MEXICO：Oaxa－ $c a$ ：Distrito Centro：Municipio de Oaxaca de Juárez：Ejido Guadalu－ pe Victoria， $17^{\circ} 04.006^{\prime} \mathrm{N} 96^{\circ} 43.20^{\prime} \mathrm{W}, 1700 \mathrm{~m}, 12 . v i i .2009$ ，J．Cruz， $1 ठ^{\lambda}$（CNAN）；Oaxaca City，19．vi．1947，B．Malkin， 1 \＆（AMNH）． Municipio de Santa Cruz Xoxocotlán：Monte Alban［17 ${ }^{\circ} 02.639^{\prime} \mathrm{N}$ $\left.96^{\circ} 46.048^{\prime} \mathrm{W}\right], 30 . i .1940,3$ ¢， $1 \delta^{\AA}$（CNAN）．Municipio de Sole－ dad Etla：San Gabriel， $7 \mathrm{~km} \mathrm{~N}\left[17^{\circ} 13.65^{\prime} \mathrm{N} 96^{\circ} 44.697^{\prime} \mathrm{W}\right], 2125$ m，22．vii．2002，O．Francke，E．González \＆J．Ponce，SW facing slopes with oaks，in burrows in open ground， $2 \widehat{J}, 3 q$（AMCC［LP 2032］）， 1 §， 2 ＋（CNAN）；San Miguel Etla， 9.3 km N （road to las Guacamayas）， $17^{\circ} 13.438^{\prime} \mathrm{N} 96^{\circ} 44.301^{\prime} \mathrm{W}, 2196 \mathrm{~m}, 15 . x .2005$ ，O． Francke，M．Córdova，A．Jaimes，G．Montiel \＆C．Santibáñez， 5 q （AMNH）， 1 \＆， 2 juv．（AMCC［LP 6540］）；San Miguel Etla， 9 km N， $17^{\circ} 13.486^{\prime}$ N $96^{\circ} 44.315^{\prime}$ W， 2197 m，26．iii．2010，O．Francke，J． Cruz，C．Santibáñez \＆A．Valdez，pine forest，under rocks，daytime rock rolling， $1 \delta^{\lambda}, 1 \not \subset(\mathrm{CNAN}), 1 \not \subset[\mathrm{leg}]$（AMCC［LP 11036］）． Distrito de Tlacolula：Municipio de San Lorenzo Albarradas： Cerro Guirone， N slope［ $16^{\circ} 54.383^{\prime} \mathrm{N} 96^{\circ} 16.567^{\prime} \mathrm{W}$ ］， $7200-7500$ ft ，12．vi．1970，M．R．Bogert， 1 \＆（AMNH）；Mitla， 4.5 km E， $17^{\circ} 15.642^{\prime} \mathrm{N} 96^{\circ} 32.427^{\prime} \mathrm{W}, 23 . v i i .2002$ ，J．Ponce，in burrow under stone， 1 \＆（AMCC［LP 2030］）．Municipio de Santiago Matatlan： San Pablo Guila， $16^{\circ} 48.1^{\prime} \mathrm{N} 96^{\circ} 26.4^{\prime} \mathrm{W}$ ，S．Luna， $1 \delta^{\top}$（CALA）．

29．Diplocentrus reddelli Francke，1978：MEXICO：Campe－ che：Municipio de Calakmul：Calakmul，Reserva Ejidal Ley de Fo－ mento Agropecuario， $17^{\circ} 59.226^{\prime} \mathrm{N} 89^{\circ} 24.907^{\prime} \mathrm{W}, 234 \mathrm{~m}, 7 . v i i .2011$ ， G．Montiel，G．Contreras，H．Montaño，R．Paredes \＆A．Valdez， 1 \＆， 1 subad．q（CNAN－Sc1638）．Calakmul，Yaax＇Che camping site， $18^{\circ} 29.227^{\prime} \mathrm{N} 89^{\circ} 53.953^{\prime} \mathrm{W}, 199 \mathrm{~m}$, 13．vii．2010，O．Francke，G． Montiel，C．Santibáñez，D．Barrales，G．Contreras \＆J．Cruz， 9 §， 1 \＆（CNAN－Sc1642）．Quintana Roo：Municipio de Benito Juárez， road 307 km 304 ，Hotel Moon Palau，golf camp， $20^{\circ} 59.326^{\prime} \mathrm{N}$ $86^{\circ} 49.923^{\prime} \mathrm{W}, 25 \mathrm{~m}, 30 . \mathrm{i} .2004$ ，H．Carmona， 1 \＆（CNAN－Sc1637）， 22．vi．2005，H．Carmona， 1 q（CNAN－Sc1633）．Municipio de Che－ tumal：ECOSUR，campus Chetumal， $18^{\circ} 32.660^{\prime} \mathrm{N} 88^{\circ} 15.844^{\prime} \mathrm{W}, 11$ m，16．vii．2010，O．Francke，C．Santibáñez，D．Barrales，G．Con－ treras，J．Cruz， 2 §， 6 ¢， 4 juv．（CNAN）， 1 \＆［leg］（AMCC［LP 11460］）；Puerto Morelos，Botanical Garden＂Alfredo Barrera Mar－ tín＂， $20^{\circ} 50.702^{\prime} \mathrm{N} 86^{\circ} 54.214^{\prime} \mathrm{W}, 38 \mathrm{~m}$ ，4．vii．2007，R．Paredes， $1 \delta^{\lambda,}$ 1 juv．（CNAN－Sc1634），20．vii．2010，O．Francke，G．Montiel，C． Santibañez，J．Cruz，G．Contreras \＆D．Barrales， 1 \＆［leg］（AMCC ［LP 10982］）， 1 juv．［leg］（AMCC［LP 11463］）．Municipio de Fe－ lipe Carrilo Puerto：Felipe Carrilo Puerto，28．ix．1965，V．Molina， 1δ（CNAN－Sc1641）；Reserva Natural Sian Ka＇an， $19^{\circ} 43.343^{\prime} \mathrm{N}$ $97^{\circ} 48.72^{\prime}$ W， 18 m，22．vii．2010，O．Francke，E．Francke，G．Mon－
tiel，C．Santibáñez，D．Barrales，G．Contreras，J．Cruz \＆M．Paradiz， $1 \precsim$（CNAN－Sc1643）， 2 juv．（AMCC［LP 11461］）；Km 95， 1 km E Chunhuhub， $19^{\circ} 34.192^{\prime} \mathrm{N} 88^{\circ} 35.587^{\prime} \mathrm{W}, 36 \mathrm{~m}, 16 . v i i .2010$ ，O． Francke，E．Francke，G．Montiel，C．Santibáñez，D．Barrales，G． Contreras，J．Cruz \＆M．Paradiz， 1 juv．q（CNAN－Sc1639）， 1 juv．中［leg］（AMCC［LP 11464］）．Yucatán：Municipio de Abalá：Cenote Yak Ha，Cacao， $20^{\circ} 40.365^{\prime} \mathrm{N} 89^{\circ} 13.173^{\prime} \mathrm{W}, 23 \mathrm{~m}, 18 . \operatorname{vii} .2010$ ，O． Francke，E．Francke，G．Montiel，C．Santibáñez，D．Barrales，G． Contreras，J．Cruz \＆M．Paradiz， 1 ơ（CNAN－Sc1635）， 1 \＆［leg］ （AMCC［LP 11459］）．Municipio de Hoctún： 3 km W of deviation to Izmal－Hoctun on Mexico Route 180， $20^{\circ} 52.807^{\prime} \mathrm{N} 89^{\circ} 13.173^{\prime} \mathrm{W}$ ， 23 m，19．vii．2010，O．Francke，E．Francke，G．Montiel，C．San－ tibáñez，D．Barrales，G．Contreras，J．Cruz \＆M．Paradiz， 2 \＆ （CNAN－Sc1636）， 1 subad．ㅇ［leg］（AMCC［LP 11462］）．Muni－ cipio de Opichen：Actun Xpukil［ $20^{\circ} 33.070^{\prime} \mathrm{N} 89^{\circ} 54.724^{\prime} \mathrm{W}, 93$ $\mathrm{m}]$ ，3．viii．1973，J．Reddell，holotype đ（AMNH），17．vii．2010，O． Francke，E．Francke，G．Montiel，C．Santibáñez，D．Barrales，G． Contreras，J．Cruz \＆M．Paradiz，outside cave， 20 §， 1 q， 5 juv． （CNAN）， $1 \delta^{\lambda}[\operatorname{leg}]$（AMCC［LP 10981］）．

30．Diplocentrus sagittipalpus Santibáñez－López，Francke \＆ Prendini，2013．MEXICO：Oaxaca：Distrito de Ixtlán de Juárez： Municipio de Santa Catarina Ixtepeji：Highway 175，S of Ixtlán， $17^{\circ} 15.642^{\prime} \mathrm{N} 96^{\circ} 32.427^{\prime} \mathrm{W}, 2075 \mathrm{~m}$ ，21．vii．2002，L．Prendini，E． González，O．Francke \＆J．Ponce，in burrows under stones， 2 q， 6 juv．paratypes（AMCC［LP 2029］）， 7 juv．paratypes（CNAN）．Ix－ tepeji， 8.4 km del Punto， $17^{\circ} 16.059^{\prime} \mathrm{N} 96^{\circ} 35.275^{\prime} \mathrm{W}, 4 . v i i .2008$ ，O． Francke，A．Quijano \＆C．Santibáñez，paratype q（CNAN）， 1 juv． （AMCC［LP 11466］）．El Cumbre，on ridge E Cerro San Felipe，road to Ixtlán de Juárez［17 $\left.{ }^{\circ} 14.336^{\prime} \mathrm{N} 96^{\circ} 29.486^{\prime} \mathrm{W}\right], 8000-9000 \mathrm{ft}$ ， 28．ix．1961，C．M．\＆M．R．Bogert，paratype đ̋（AMNH）；El Punto， road to Ixtlán de Juárez［ $\left.17^{\circ} 12.779^{\prime} \mathrm{N} 96^{\circ} 35.176^{\prime} \mathrm{W}\right]$ ，19．viii．1961， C．M．\＆M．R．Bogert， 4 paratypes（AMNH）；El Punto，1－5 mi．NE，road to Ixtlán de Juárez［ $\left.17^{\circ} 12.779^{\prime} \mathrm{N} 96^{\circ} 35.176^{\prime} \mathrm{W}\right], 7500$ ft ，3．ix．1961，Miller \＆Bogert，paratype đ（AMNH）；Ixtlán de Juárez， 2 mi．E［ $\left.17^{\circ} 19.929^{\prime} \mathrm{N} 96^{\circ} 29.486^{\prime} \mathrm{W}\right], 7600 \mathrm{ft}$ ，20．vii．1963， G．Sludder，paratype $\widehat{\delta}$（AMNH）．Municipio de Santa María Jaltianguis：Campamento las Flores， $17^{\circ} 21.036^{\prime} \mathrm{N} 96^{\circ} 31.829^{\prime} \mathrm{W}$ ， 2309 m，16．vi．2007，C．Santibáñez \＆A．Valdez，holotype õ （CNAN－T0676）， 9 ふ， 1 \＆paratypes（CNAN－T0677）， 5 § para－ types（AMNH）， $17^{\circ} 21.056^{\prime} \mathrm{N} 96^{\circ} 31.873^{\prime} \mathrm{W}, 2320 \mathrm{~m}, 22 . i v .2010, \mathrm{~A}$ ． Valdez，C．Santibáñez，J．Cruz \＆D．Barrales，pine－oak forest，on ground，UV light detection，paratype q（CNAN），paratype q［leg］ （AMCC［LP 10975］）．

31．Diplocentrus silanesi Armas \＆Martín－Frías，2000．ME－ XICO：Estado de México：Municipio de Tejupilco：Puerto el Rodeo， $900 \mathrm{~m}, 21 . v i .2002$ ，E．González， 1 §， 1 subad．§̉， 1 juv．（AMCC ［LP 2025］）；Tejupilco， 3 km E Pungaracho， $860 \mathrm{~m}, 16.1 i i .2002$ ，O． Francke，E．González \＆S．Reynaud， 2 §（CNAN－Sc1618）．Guer－ rero：Teloloapan，Cueva de los 7 salones， 1.5 km NW La Yerb－ abuena， $18^{\circ} 27.374^{\prime} \mathrm{N} 99^{\circ} 55.38^{\prime} \mathrm{W}, 1724 \mathrm{~m}, 23 . x .2010$ ，A．Valdez，J． Cruz，D．Barrales \＆G．Contreras， 1 §， 4 个， 1 ठ（CNAN－Sc1617； Sc1620），4．xi．2010，G．Contreras，D．Barrales，J．Mendoza \＆D． Ortiz， 2 §， 2 Q ， 4 juv．（CNAN－Sc1621）．Michoácan：Municipio de Zitácuaro：Hacienda＂La Florida＂， $19^{\circ} 22.018^{\prime} \mathrm{N} 100^{\circ} 29.27^{\prime} \mathrm{W}, 750$ m，17．i．2007，X．Vázquez， 1 §， 1 q（CNAN－Sc1619）．

32．Diplocentrus sissomi Santibáñez－López，Francke \＆Pren－ dini，2013：MEXICO：Oaxaca：Distrito de Miahuatlan：Muni－ cipio de San Cristóbal Amatlán：San Juan Mixtepec， $16^{\circ} 16.6^{\prime} \mathrm{N}$ $96^{\circ} 17.95^{\prime} \mathrm{W}$ ，iv．2002，E．Aldasoro， 2 ơ（CALA）；San Lorenzo

Mixtepec， $1 \mathrm{~km} \mathrm{~N}, 16^{\circ} 17.493^{\prime} \mathrm{N} 96^{\circ} 20.910^{\prime} \mathrm{W}, 2120 \mathrm{~m}, 23 . \mathrm{vi} .2006$ ， O．Francke，G．Villegas，H．Montaño，A．Valdez \＆C．Santibáñez，
 T0679）， 3 §， 7 q， 2 subad．$q, 5$ juv．paratypes（AMNH）， 1 q， 22 juv．paratypes（AMCC［LP 6531］）， 1 \＆， 18 juv．paratypes（AMCC ［LP 6538］）， 1 \＆， 12 juv．paratypes（AMCC［LP 6539］）， 1 \＆， 2 juv． paratypes（AMCC［LP 6541］）．

33．Diplocentrus tehuacanus Hoffmann，1931：MEXICO： Morelos：Municipio de Tlaquiltenango：Huautla， $18^{\circ} 26.4^{\prime} \mathrm{N}$ $99^{\circ} 01.5^{\prime} \mathrm{W}, 945 \mathrm{~m}, 3 . \mathrm{viii} .2003$ ，M．Córdova，A．Jaimes \＆H．Lagu－ na， 1 \＆， $1 ठ^{\lambda}, 2$ subad．$q, 2$ juv．（CNAN）；Quilamula， $18^{\circ} 30.616^{\prime} \mathrm{N}$ $99^{\circ} 01.183^{\prime} \mathrm{W}, 1070 \mathrm{~m}, \mathrm{M}$ ．Córdova \＆A．Jaimes， 3 §, $1 q$（CNAN）． Puebla：Municipio de Tehuacan：Tehuacan， 2 km E， $18^{\circ} 24.002^{\prime} \mathrm{N}$ $97^{\circ} 22.867^{\prime}$ W， 1435 m，25．vii．2002，L．Prendini，O．Francke，E． González \＆J．Ponce，in burrows and under stones，semi－desert scrub， 1 ふ̂， 1 juv．ô， 2 juv．$\&$（AMCC［LP 2044］）， 1 §， 1 中， 1 subad．§， 1 juv．§̂， 1 juv．q（AMCC［LP 2045］）．

8．Appendix 2

List of 95 morphological characters scored for cladistic analysis of 35 species in 6 diplocentrid scorpion genera．Characters from previous analyses that correspond partially or entirely to those in the present list（and matrix，Table 2）are indicated in brackets by the following abbreviations P00（Prendini 2000），PEA03（Prendini et al．2003）and MEA12（Mattoni et al．2012），followed by the character number from the corresponding publication． 15 unin－ formative characters（excluded from all analyses）are indicated by \dagger ．In characters defined for one sex only，the respective sex symbol follows the character description．

Pigmentation pattern

0 ．Base coloration：dark brown to black（0）；reddish（1）；orange－ brown（2）；yellowish（3）．
1．Chelicerae，infuscation：absent（0）；present（1）［PEA03：90］．
2．Metasoma dorsal and lateral carinae，coloration relative to ad－ jacent intercarinal surfaces：darker（0）；similar（1）．
3．Pedipalp chela manus，dorsal secondary carina，coloration rela－ tive to adjacent intercarinal surfaces（ $\delta^{\text {® }}$ ）：darker（0）；similar（1）．
4．Pedipalp chela manus，digital carina，coloration relative to ad－ jacent intercarinal surfaces（ ${ }^{\text {§ }}$ ）：darker（0）；similar（1）．
5．Pedipalp chela manus，retrolateral secondary carina，colora－ tion relative to adjacent intercarinal surfaces（ ${ }^{\top}$ ）：darker（0）； similar（1）．
6．Pedipalp chela fingertips，coloration relative to chela manus： similar（0）；darker（1）；paler（2）．
7．Pedipalp chela manus，dorsal secondary carina，coloration rela－ tive to adjacent intercarinal surfaces（ q ）：darker（0）；similar（1）．
8．Pedipalp chela manus，digital carina，coloration relative to ad－ jacent intercarinal surfaces（ q ）：darker（0）；similar（1）．
9．Pedipalp chela manus，retrolateral secondary carina，colora－ tion relative to adjacent intercarinal surfaces（ q ）：darker（0）； similar（1）．
10．Legs，coloration relative to mesosomal tergites：similar（0）； paler（1）．
11．Legs，infuscation：absent（0）；present（1）［PEA03：99］．

34．Diplocentrus whitei（Gervais，1844）：MEXICO：Coahuila： Municipio de Cuatrociénegas：Sierra San Marcos II， $26^{\circ} 54.798^{\prime} \mathrm{N}$ $102^{\circ} 08.25^{\prime} \mathrm{W}, 761 \mathrm{~m}, 18 . v i i .2006$ ，E．González，B．Hendrixson， K．McWest \＆S．Grant， 2 §（AMNH）， 2 §（CNAN－Sc1691）， 1 ठ （AMCC［LP 6580］）， 1 ex．［leg］（AMCC［LP 6614］）；Ojo de Agua， Ejido el Oso， $27^{\circ} 00.056^{\prime} \mathrm{N} 102^{\circ} 00.226^{\prime} \mathrm{W}, 1039 \mathrm{~m}, 19 . \mathrm{vi} .2006$ ，O． Francke，W．D．Sissom，K．McWest，B．Hendrixson，S．Grant，E． González，M．Córdova，A．Ballesteros， 3 §， 2 q（AMNH）， 3 §， 1 Q， 1 juv．（CNAN－Sc1692）， 1 ex．（AMCC［LP 6463］）．Municipio de Ocampo：Rancho Agua Verde，29．i．2005，P．Sprouse \＆C．Savvas， 1 juv．+ （AMCC［LP 4101］）．

35．Diplocentrus zacatecanus Hoffmann，1931：MEXICO： Aguascalientes：Municipio de Tepezala，［ $\left.22^{\circ} 13.362^{\prime} \mathrm{N} 102^{\circ} 10.014^{\prime} \mathrm{W}\right]$ ， 2100 m ，lectotype ${ }^{\top}$（CNAN－T－0761）， 1 §， 2 甲（CNAN－T0762）； Tepezala， $1 \mathrm{~km} \mathrm{~N}, 22^{\circ} 14.348^{\prime} \mathrm{N} 102^{\circ} 10.467^{\prime} \mathrm{W}, 2048 \mathrm{~m}, 4 . v i i .2005$ ， O．Francke，J．Ponce，M．Córdova，A．Jaimes，G．Francke \＆V．Ca－ povila， 3 ð（AMNH）， $3 \diamond^{\lambda}$（CNAN）， 3 juv．（AMCC［LP 5339］）．

Chelicerae

12．Movable finger subdistal tooth，length relative to medial tooth：smaller（0）；similar（1）．
13．Movable finger ventral distal tooth，length relative to dorsal distal tooth：equal（0）；subequal，i．e．>0.5（1）；unequal，i．e． <0.5（2）［PEA03：2］．

Carapace

14．Median ocular tubercle，protrusion：raised（0）；level（1） ［P00：2］．
15．Median longitudinal sulcus，width：narrow（0）；broad（1） ［P00：4］．
16．Anteromedian longitudinal sulcus，length：complete（0）；ves－ tigial（1）［MEA12：7］．
$17 \uparrow$ ．Lateral ocelli，number of pairs： 3 （0）； $2(1) ; 0$（2）［P00：1］．
18．Nongranular surfaces，punctation：absent（0）；present（1）．

Pedipalp carination and surface macrosculpture

19．Pedipalp femur intercarinal surfaces：uniformly granular（0）； granular only medially（1）；smooth（2）．
20．Pedipalp femur nongranular intercarinal surfaces，punctation： present（0）；absent（1）．
21．Femur dorsal intercarinal surface，shape：flat（0）；shallowly convex（1）；markedly convex（2）［PEA03：40；MEA12：10］．
22．Patella dorsal retrolateral carina，development（ δ^{\top} ）：distinct， i．e．，raised above adjacent intercarinal surfaces（0）；obsolete， i．e．，not raised above adjacent intercarinal surfaces（evident as difference in texture or pigmentation）（1）［PEA03：42］．
23．Patella dorsal retrolateral carina，texture（ \widehat{O}^{\top} ）：granular（0）； smooth（1）．
24．Patella dorsal retrolateral carina，development (q) ：distinct （0）；obsolete（1）［P00：17］．
$25 \dagger$ ．Patella dorsal retrolateral carina，texture（ q ）：granular（0）； smooth（1）．
26．Patella retrolateral median carina，development（ $\left.\delta^{\text {}}\right)$ ：distinct （0）；obsolete（1）．
27. Patella retrolateral median carina, texture (δ^{\top}): granular (0); smooth (1).
28. Patella retrolateral median carina, development (q): distinct (0); obsolete (1).
$29 \dagger$. Patella retrolateral median carina, texture (O): granular (0); smooth (1).
30. Patella ventral median carina (\widehat{O}^{\top}): absent (0); granular (1); smooth (2).
31. Chela manus, dorsal secondary carina, development (δ^{7}): distinct (0); obsolete (1) [P00:20; PEA03:31].
32. Chela manus, dorsal secondary carina, texture ($\left.\delta^{\lambda}\right)$: smooth (0); granular to crenulate (1).
33. Chela manus, dorsal secondary carina, development (q): distinct (0); obsolete (1) [P00:21].
34. Chela manus, dorsal secondary carina, texture (q): smooth (0); granular to crenulate (1).
35. Chela manus, digital carina, development (δ^{1}): distinct (0); obsolete (1) [P00:23; PEA03:32].
36. Chela manus, digital carina, texture (δ^{\top}): smooth (0); granular (1).
37. Chela manus, digital carina, length $\left(\delta^{\top}\right)$: base of manus to tip of fixed finger (0); base of manus to base of fixed finger (1) [PEA03:32].
38. Chela manus, digital carina, development (q): distinct (0); obsolete (1) [P00:23].
39. Chela manus, digital carina, texture (q): smooth (0); granular (1).
40. Chela manus, digital carina, length (q): base of manus to tip of fixed finger (0); base of manus to base of fixed finger (1).
41. Chela manus, dorsal secondary, digital and retrolateral secondary carinae, relative development (\AA^{\AA}): digital carina more developed than dorsal secondary and retrolateral secondary carinae (0); dorsal secondary, digital and retrolateral secondary carinae similarly developed (1); dorsal secondary and retrolateral secondary carinae more developed than digital carina (2) [P00:24].
42. Chela manus, dorsal secondary, digital and retrolateral secondary carinae, relative development (q): digital carina more developed than dorsal secondary and retrolateral secondary carinae (0); dorsal secondary, digital and retrolateral secondary carinae similarly developed (1); dorsal secondary and retrolateral secondary carinae more developed than digital carina (2) [P00:24].
43. Chela manus, retrolateral secondary carina, texture ($\left.\delta^{\lambda}\right)$: smooth (0); granular (1).
44. Chela manus, retrolateral secondary carina, texture (q): smooth (0); granular to crenulate (1).
45. Chela manus, dorsal margin, curvature relative to digital carina $\left(\delta^{1}\right)$: convex, not parallel to digital carina (0); subparallel to digital carina (1); parallel to digital carina (2) [MEA12: 15].
46. Chela manus, dorsal margin, curvature relative to digital carina (q): convex, not parallel to digital carina (0); subparallel to digital carina (1).
47. Chela manus, ventral median carina, orientation of distal edge relative to trichobothria $E t_{1}$ and V_{1} : directed towards $E t_{1}$ (0); directed towards a point less than half the distance from $E t_{1}$ to $V_{1}(1)$; directed towards a point approximately half the distance from $E t_{1}$ to $V_{1}(2)$; directed towards a point more
than half the distance from $E t_{1}$ to V_{1} (3); directed towards V_{1} (4) ADDITIVE [P00:27].
$48 \dagger$. Chela manus, dorsal marginal carina length: base of manus to base of fixed finger (0); base of manus to tip of fixed finger (1).
49. Chela manus, intercarinal surfaces (${ }^{\text {§ }}$): smooth (0); granular (1); reticulate (2) [MEA12:29].
50. Chela manus, intercarinal surfaces (q): smooth (0); granular (1); reticulate (2) [MEA12:30].
51. Chela manus, nongranular intercarinal surfaces, punctation: present (0); absent (1).
52. Chela fixed finger, prolateral concavity, proximal to $i b$ and it trichobothria (()): weakly developed, shallow (0); well developed, deep (1).

Pedipalp chela finger dentition

53. Chela movable finger, median denticle row, development: distinct from base to tip of finger (0); weakly defined in basal third of finger, indistinct from prolateral denticle row (1).
54. Chela movable finger, median denticle row: discontinuous, interrupted by larger denticles (0); continuous, not interrupted by larger denticles (1).
$55 \dagger$. Chela movable finger, median denticle row, first and second denticles, size relative to other denticles: larger (0); similar (1).
55. Chela movable finger, retrolateral denticle row, disposition: parallel to median denticle row from second large median denticle to tip of finger (0); parallel to median denticle row from base to tip of finger (1).
56. Chela movable finger, prolateral denticle row, disposition: parallel to median denticle row from second large median denticle to tip of finger (0); parallel to median denticle row from base to tip of finger (1).

Pedipalp trichobothria

$58 \dagger$. Patella, ventral surface, v trichobothria, number: 3 (0); 4, i.e., one accessory (1); $12-18$, i.e., $8-14$ accessories (2).
$59 \dagger$. Patella, retrolateral surface, et trichobothria, number: 3 (0); 4 (1).
$60 \dagger$. Patella, retrolateral surface, est trichobothria, number: 2 (0); 3 (1).
$61 \dagger$. Patella, retrolateral surface, em trichobothria, number: 2 (0); 3 (1); 4 (2).
$62 \dagger$. Patella, retrolateral surface, esb trichobothria, number: 2 (0); 5 (1).
$63 \dagger$. Patella, retrolateral surface, $e b$ trichobothria, number: 5 (0); 6 (1).
64. Chela manus (δ^{λ}), trichobothrium $i b$, position relative to articulation between fixed and movable fingers: aligned (0); distal (1).
65. Chela manus (${ }^{\top}$), trichobothrium it, position relative to trichobothrium $i b$: aligned (0); distal (1).
$66 \dagger$. Chela manus, ventral surface, V trichobothria, number: 4 (0); more than 4, i.e., 5-9 accessories (1).

Legs

67. Leg telotarsi, laterodistal lobes: truncate (0); rounded (1) [P00:65].
68. Leg lateral surfaces, punctation: absent (0); present (1).
$69 \dagger$. Leg basitarsi, prolateral pores (δ^{\top}): absent (0); present (1) [P00:67].
69. Leg I basitarsus, proventral distal spiniform macroseta: absent (0); present (1).
70. Leg I basitarsus, retroventral distal spiniform macroseta: absent (0); present (1).
71. Leg I basitarsus, proventral subdistal spiniform macroseta: absent (0); present (1).
72. Leg I basitarsus, retroventral subdistal spiniform macroseta: absent (0); present (1).
73. Leg I basitarsus, proventral medial spiniform macroseta: absent (0); present (1).
74. Leg I basitarsus, retroventral medial spiniform macroseta: absent (0); present (1).
75. Leg I basitarsus, retrolateral medial spiniform macroseta: absent (0); present (1).
76. Leg II basitarsus, proventral distal spiniform macroseta: absent (0); present (1).
$78 \dagger$. Leg II basitarsus, retroventral distal spiniform macroseta: absent (0); present (1).
77. Leg II basitarsus, proventral subdistal spiniform macroseta: absent (0); present (1).
78. Leg II basitarsus, retroventral subdistal spiniform macroseta: absent (0); present (1).
79. Leg II basitarsus, proventral medial spiniform macroseta: absent (0); present (1).
80. Leg II basitarsus, retroventral medial spiniform macroseta: absent (0); present (1).
81. Leg II basitarsus, retroventral submedial spiniform macroseta: absent (0); present (1).
82. Leg II basitarsus, ventral distal spiniform macroseta: absent (0); present (1).
83. Leg II basitarsus, retroventral subbasal spiniform macroseta: absent (0); present (1).
$86 \dagger$. Leg II basitarsus, retrolateral subdistal spiniform macroseta: absent (0); present (1).
84. Leg II basitarsus, retrolateral medial spiniform macroseta: absent (0); present (1).
85. Leg II basitarsus, retrolateral subbasal seta: absent (0); spiniform macroseta present (1); macroseta present (not spiniform) (2).
86. Legs III and IV basitarsi, retroventral subdistal spiniform macrosetae: absent (0); present (1).
87. Legs III and IV basitarsi, ventral medial spiniform macrosetae: absent (0); present (1).

Mesosoma, metasoma and telson

91. Sternite VII median carina, development: distinct (0); obsolete (1).
92. Sternite VII median carina, length relative to submedian carinae: equal (0); less (1).
93. Sternite VII submedian carinae, development: distinct (0); obsolete (1) [PEA03:102, 103].
94. Mesosoma, metasoma and telson, nongranular dorsal surfaces, punctation: absent (0); present (1).
