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Abstract

The mega-diverse haplogyne family of goblin spiders (Oonopidae Simon, 1890) has long been among the most poorly known families of
spiders. However, since the launch of the goblin spider Planetary Biodiversity Inventory project knowledge about Oonopidae is rapidly
expanding. Currently, Oonopidae is placed within the superfamily Dysderoidea and is divided into three subfamilies. Nevertheless, the
monophyly and internal phylogeny of this family has not yet been investigated based on DNA sequence data. Hence, this study reports the
first phylogeny based on ribosomal sequence data including 37 oonopid genera and representatives of all families within the Dysderoidea.
These results suggest that the majority of the oonopid genera constitute a natural group. Moreover, two subfamilies Orchestininae and
Sulsulinae and several morphologically defined groups e.g. the Zyngoonops- and Dysderina-groups, were well supported. In contrast, the
Pelicinus-, Stenoonops- and Scaphiella-groups were not corroborated. Although most genera represented by more than one specimen were
recovered as monophyletic, our study casts doubt on the monophyly of the genus Aschnaoonops Makhan & Ezzatpanah, 2011. Further-
more, the results corroborate that a low degree of body sclerotisation might be considered as a plesiomorphic trait.
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1. Introduction

Goblin spiders (Oonopidae) are small haplogyne spiders,
ranging in size from 0.8 to 3 mm. They occur through-
out the temperate and tropical regions of the world in a
large range of habitats such as deserts, mangroves, sa-
vannahs and rainforests (JocQUE & DIPPENAAR-SCHOEMAN
2006; FanNEs et al. 2008; Grismapo 2010). On a smaller
scale, goblin spiders can be found in litter (Usick 2005),
canopy (FanNEs et al. 2008) or even in caves (HARVEY
& Epwarp 2007). Oonopidae are also well represented
in the fossil record; more precisely, several oonopid fos-

sil species have been found in various ambers (PENNEY
2006; Dunror et al. 2012). Most fossil species have been
assigned to the genus Orchestina Simon, 1882, indicating
that this genus was already widespread by the end of the
Cretaceous (Saupk et al. 2012). Currently goblin spiders
include more than 1325 recognized species and 97 genera
(Prarnick 2013), but this might be regarded as a fraction
of the total diversity as it is estimated that between 2000
and 2500 species might exist worldwide (PLaTNICK 2006;
AGNARSSON et al. 2013). This underestimation of oonopid
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Fig. 1. The spider family Oonopidae is characterized by a high level of morphological diversity in traits such as the degree of body sclero-

i

tisation, ranging from heavily sclerotized taxa within the Oonopinae, e.g. Silhouettella loricatula (A), to soft-bodied oonopids, e.g. Oonops

placidus (B). (Pictures from A. Henrard)

diversity could be related to their small size, their wide
geographic distribution, their occurrence in different mi-
crohabitats and the rather recent use of adequate sam-
pling techniques such as knock-down fogging (PLATNICK
2006). The U.S. National Science Foundation (NSF)
funded the goblin spider Planetary Biodiversity Project
(PBI) from 2006 in which more than 45 researchers were
involved with the aim to revise this mega-diverse fam-
ily. Since the start of this goblin spider PBI project, a
tremendous amount of taxonomic work has been done
with the result of a twofold increase in described species
and more than 70 publications. Based upon these thor-
ough revisions of several genera, a high level of morpho-
logical diversity is observed within this family in traits
such as carapace shape and ornamentation, arrangement
and number of eyes, genital morphology and degree of
body sclerotisation ranging from soft-bodied taxa e.g.
Oonops Templeton, 1835 to heavily sclerotized taxa e.g.
Silhouettella Benoit, 1979 (Fig. 1). Additionally, sexual
dimorphism is observed in several genera e.g. Unicorn
Platnick & Brescovit, 1995 and Brignolia Dumitrescu &
Georgescu, 1983.

However, our current knowledge of the phylogeny
of the Oonopidae is severely limited and solely based
upon morphological data. Hitherto, Oonopidae is placed
as the sister group of the family Orsolobidae within the
superfamily Dysderoidea based upon the morphological
analyses of Pratnick et al. (1991) and Ramirez (2000).
The remnant families within the Dysderoidea are the
Segestriidae and Dysderidae. GriswoLp et al. (2012)
suggested that the recently described family Troglorap-
toridae might be a primitive member of the Dysderoidea
based on spinneret morphology among others. Orsolo-
bidae and Oonopidae are suggested to be sister groups
based upon (1) the presence of only two tarsal claws, (2)
claw dentition bipectinate (although few oonopids have
unipectinate claws, such as Oonops pulcher Templeton,
1835, Tapinesthis inermis Simon, 1882 or Birabenella
Grismado, 2010; Pratnick & DupERRE 2009¢; HENRARD
& JocquE 2012) and (3) the presence of propriorecep-
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tor bristles on the tarsi (FORSTER & Prarnick 1985; PLAT-
Nick et al. 1991; Ramirez 2000). The monophyly of the
Oonopidae is based upon the presence of a completely
fused, unpaired testis; female palp lacking a claw; tarsal
organ flat, exposed or capsulate, with a distinctive longi-
tudinal ridge originating at the proximal end of the organ;
legs I and II with one more tarsal organ receptor than
legs 1T and IV (BUrGER 2009; BURGER & MicHALIK 2010;
PrarNIck et al. 2012).

However, monophyly of this family has not yet been
adequately tested with molecular data. Additionally, the
internal phylogeny of the Oonopidae is rather poorly in-
vestigated. Hitherto, cladistic analyses have been limited
to species-level work (HENRARD & JocQUE 2012; ANDRIA-
MALALA & HormiGa 2013; FANNEs 2013) solely based on
morphological data. At the supraspecific level, PLaTnick
et al. (2012) recognized three subfamilies within the
Oonopidae: the Orchestininae (containing only the soft-
bodied genus Orchestina), the Sulsulinae (containing
the soft-bodied genera Sulsula Simon, 1882, Dalmasula
Platnick, Sziits & Ubick, 2012, Unicorn, Xiombarg
Brignoli, 1979, Puan Izquierdo, 2012 and Cortestina
Knoflach, 2009) and the Oonopinae (containing all the
remaining genera, including those with a heavily scle-
rotized abdomen). The Orchestininae and Sulsulinae are
treated as more primitive oonopid subfamilies (PLaTNICK
et al. 2012) based upon the presence of a well-sclerotized
sperm duct in the bulbus, a feature also found in Orso-
lobidae and all other spiders (ForsTER & PrLATNICK 1985;
Prarnick et al. 2012). Prarnick et al. (2012) consider the
soft-bodied New Zealand genus Kapitia Forster, 1956 as
the sister group of other Oonopinae. Furthermore, within
the higher Oonopinae, a distinction can be made be-
tween soft-bodied genera such as Birabenella, Oonops,
Neotrops Grismado & Ramirez, 2014 and Oonopinus Si-
mon, 1893 and hard-bodied (armoured) genera (Fig. 1).
These are characterized by a distinctly sclerotized abdo-
men, and have been considered to constitute a mono-
phyletic group (Pratnick & DuPERrE 2010b; PLATNICK et
al. 2012). Within the armoured oonopids, six large ge-
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nus groups have so far been recognized based on puta-
tive synapomorphies: the Stenoonops-group (PLATNICK
& Duperre 2010b), the Dysderina-group (PLATNICK &
Duperre 2011b,a, 2012), the Scaphiella-group (PLATNICK
& DupErrge 2009a, 2010c, 2011c¢), the Pelicinus-group
(ALvAREZ-PADILLA et al. 2012; PLATNICK et al. 2012), the
Gamasomorphoids (ALvAREZ-PADILLA et al. 2012) and the
Zyngoonops-group (Fannes 2012). However, as noted
above, these subfamilies and genus groups are not based
on quantitative phylogenetic analyses, and their validity
thus remains to be tested.

The main goals of this study are to infer the first phy-
logeny of the Oonopidae based on ribosomal DNA se-
quence data and to use this phylogeny to evaluate how
well several morphologically defined groups delineate
well supported phylogenetic relationships.

2. Materials and methods

2.1. Taxon sampling

The dataset includes 106 Oonopidae taxa representing
36 genera and stemming from different continents and
several specimens representing Segestriidae, Orsolobi-
dae, Dysderidac and Trogloraptoridae (Table 1). A few
specimens representing the Filistatidae and Liphistiidae
were included as outgroup taxa. Specimens or tissue of
specimens were provided by members of the PBI pro-
ject. Specimens were collected from 2001 until 2012 by
different sampling techniques (mainly sieving, pitfall
trapping, fogging, hand collecting). Fixation and preser-
vation conditions of the collected specimens might have
varied among collectors. Most specimens were sampled
and stored in 70% ethanol which is common for mor-
phological work. A minority of the samples was fixed
and stored directly in 97% ethanol at — 20°C. Specimens
were identified to family, genus and/or species level by
members of the PBI project (Table 1).

2.2. DNA extraction, amplification and

seqguencing

Samples were extracted with a NucleoSpin® tissue kit
(Macherey-Nagel, Diiren) according to the manufac-
turer’s protocol. Three overlapping fragments of /8S (c.
1800 nt) were amplified using the following primer pairs:
18S1F/18S5R (c. 820 nt), 18S3F/18SBI (c. 850 nt) and
18Sa2.0/18S9R (c. 650 nt) (GIRIBET et al. 1996). In addi-
tion, partial fragments of the 28S ribosomal DNA were se-
quenced with the primer pair: 28SZX1/28SC (c. 1200 nt)
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(MaALLATT & SuLLivan 1998; HEpIN & Mabpbison 2001).
Polymerase chain reaction was initiated with an initial
denaturation at 95°C for 230" followed by 35 (/8S, 28S)
cycles. Each cycle started with a denaturation at 95°C
(30") followed by an annealing step of 30" (annealing
temperatures 18S1F/18S5R: 57°C; 18S3F/18SBI: 58°C;
18Sa2.0/18S9R: 48°C; 28SZX1/28SC: 48.5°C). Each
cycle ended with an extension step at 72°C (1'30"). Gen-
bank accession numbers are provided in Table 1. DNA
samples are deposited in the Royal Belgian Institute
of Natural Sciences (Belgium, Brussels) and stored at
—20°C. Sequence data for missing outgroup specimens
were obtained from NCBI Genbank (Table 1). Approxi-
mately 97% of the sequences are new from this study
(Table 1).

2.3. Alignment procedures

Sequences were edited and assembled in SeqScape Soft-
ware v2.5 (Applied Biosystems, Foster City, CA, USA).
18S sequences were aligned based on two methods re-
sulting in (1) a MAFFT alignment, based on the E-INS-I
algorithm of the program package MAFFT (KatoH et al.
2002) implemented online (MAFFT version 7 (KatoH
& StanDpLEY 2013), default settings), and (2) a structure
informed manual alignment taking into account the es-
tablished secondary structure of Androctonus australis
Ewing, 1928 (Accession number: X77908 available at:
http://www.rna.ccbb.utexas.edu). Based upon the infor-
mation of the secondary structure of A. australis, un-
paired (loop) and paired (stem) regions were delimited.
288§ sequences were aligned solely based on the E-INS-I
algorithm (MAFFT) as only a partial fragment of the 285
was obtained. Poorly aligned positions were eliminated
from the 28S alignment by using the most relaxed op-
tions in Gblocks 0.91b (CasTREsaNA 2000; DEREEPER et
al. 2008). A concatenated /85-28S alignment was created
by concatenating the MAFFT /8S and 28S alignments.
Estimates of average evolutionary divergence within
each species, genus and family were obtained by calcu-
lating the number of base differences per site within each
group in MEGAS (Tamura et al. 2011).

2.4. Phylogenetic analyses

Phylogeny reconstructions were obtained using Maxi-
mum Parsimony (MP), Maximum Likelihood (ML) and
Bayesian Inference (BI). Gaps were treated as missing
data. MP analyses were conducted with PAUP*4.0b10
(SworrorDp 1993, 2002). MP analyses were initiated with
1000 random addition sequence replicates with TBR
branch swapping and a time limit of 20 s per replicate in
PAUP*. The most parsimonious trees were filtered from
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the saved trees. Bootstrap support values were obtained
with 1000 bootstrap replicates (time limit set to 60 s per
bootstrap replicate). BI analyses were performed using
MrBayes ver. 3.2.1 (RonquistT & HUELSENBECK 2003)
available on the University of Oslo Bioportal computer
cluster (Kumar et al. 2009, http://www.bioportal.uio.no).
In a first setup, both 78S, 28S and the /8S-28S alignments
were analysed under a general time reversible (GTR;
YANG 1994) model with all model parameters estimated
from the data, a gamma distribution to account for site
rate variation (+G) and a proportion of invariant sites (+1])
as selected by jModeltest (Posaba 2008). In the second
setup, a mixed model was applied to the structural /8S
alignment. The mixed model takes into account the sec-
ondary structure by modelling the RNA paired (stem) re-
gions separately from unpaired (loop) regions. The stem
regions in which nucleotide pairing results in strong cor-
relation of substitutions across sites, were modelled by
the doublet model and a 4 x4 model (GTR+I1+G) was
used for the loop regions. All analyses were run with two
different Metropolis-coupled Markov chains (MCMC,
four chains) for 10 million generations with sampling
every 1000" generation. To ensure that MCMC conver-
gence was reached, we evaluated the average standard
deviations of split frequencies (ASDSF), the potential
scale reduction factors (PSRF) and the plots of likelihood
versus generation. 25% of the trees were discarded as
burn-in and posterior probabilities were calculated from
the remnant set of trees. ML analyses were performed us-
ing the program RAXMLGUI 1.3. (SiLvesTrRo & MIiCHA-
LAK 2012). The GTR model with a gamma distributed
rate of variation across sites was implemented for the /8S
MAFFT alignment, 28S alignment and the concatenated
data set. A mixed RNA/DNA model setup (RNA6A) was
used to conduct the ML tree reconstruction for the /85
structural alignment. The best scoring tree (with the high-
est likelihood score out of 100 heuristic searches starting
from distinct randomized maximum parsimony starting
trees) is visualised with bootstrap values calculated from
1000 pseudo-replicates.

3. Results

3.1. rRNA sequences

The most successful amplification results were obtained
for the /8S ribosomal gene fragment. More precisely 120
taxa representing 36 oonopid genera were obtained. The
amplified fragment is on average 1630 nt long and has
an average GC content of 50%. 92 positions representing
five loop regions were highly variable and excluded from
the phylogenetic analyses. The /85 MAFFT alignment
comprised 1781 positions of which 689 were variable
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(540 parsimony informative sites). The /8S structural
alignment comprised 1801 positions of which 703 were
variable (551 parsimony informative sites). The average
level of intraspecific /8S sequence variation was 0.18%
(calculated for Paradysderina viad Platnick & Dupérré,
2011, Neotrops waorani Grismado & Ramirez, 2013,
Heteroonops spinimanus Platnick & Dupérre, 2009, Or-
chestina communis Henrard & Jocqué, 2012, Tapines-
this inermis and Brignolia kapit Platnick et al., 2011).
Intrageneric /8S sequence variation within 20 oonopid
genera was on average 1.8%, which was much higher
than within one dysderid genus (Dysdera Latreille, 1804:
0.5%) and the two segestriid genera (Segestria Latreille,
1804: 0.6%, Ariadna Audouin, 1826: 0.2%) (EIl. Suppl.
Table S1). In general, /8S sequence variation across all
oonopid specimens was high (average 6.4%, El. Suppl.
Table S1). The 28S-rRNA dataset contained 64 taxa re-
presenting 27 oonopid genera. Gblocks eliminated 13%
of the 28S alignment resulting in a partial 28S fragment,
which was on average 959 nt long and had an average
GC content of 59%. Intraspecific (calculated for Neo-
trops waorani, Tapinesthis inermis, Brignolia kapit) and
intrageneric variation was on average 0.2% and 5.3% re-
spectively (EL Suppl. Table S1). The 28S alignment com-
prised 974 positions, of which 497 were variable (421
parsimony informative sites). The combined /8S-28S
dataset contained 57 taxa (27 oonopid genera) and 2752
characters of which 1024 were variable (801 parsimony
informative).

3.2. Molecular phylogenetics

Evolutionary history was reconstructed by means of BI,
ML and MP carried out on the structural and MAFFT /8S
alignment (Fig. 2), 28S alignment (EI. Suppl. Fig. S1)
and the combined /8S-28S alignment (Fig. 3). For each
of these different alignments, all three analysis types (i.e.
BI, ML and MP) resolved consistently similar clades of
species groups within the Oonopidae, however, the de-
gree of resolution varied with BI analyses tending toward
more resolution and MP analyses toward less. Higher-
level relationships were more difficult to resolve based
on each gene separately. In contrast, different analysis
types on the combined /85-28S alignment resolved con-
sistently the same higher-level relationships.

One possible drawback of ribosomal DNA genes is the
possibility of amplification of paralogous copies which
might confound phylogenetic reconstruction (MURPHY et
al. 2006; Vink 2013; Vink et al. 2011). The consistent
phylogenetic results among the two rRNA-gene trees, the
absence of uninterpretable sequence chromatograms, the
absence of multiple PCR bands and of long-branch at-
traction currently suggest no indication of the presence
of paralogous copies in these datasets. Nonetheless, the
possibility of paralogy should still be kept in mind and
future comparison with additional genes is encouraged.
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3.2.1. Oonopidae

The monophyly of the Oonopidae was consistently
strongly supported by analysis of the 285 alignment (1.00
Posterior Probability (PP), 54.6 ML, 93 MP, El. Suppl.
Fig. S1) and the combined /8S-28S alignment (1.00 PP,
96 ML, 70.5 MP, Fig. 3). The latter is in contrast with
the less consistent results based on the /8S alignments,
which contained a higher number of oonopid genera (37
versus 27). Within all analyses based on both structural
and MAFFT /8S alignments, monophyly of Oonopidae
was not recovered. However, BI analyses consistently
produced trees with a well-supported polytomous clade
containing all taxa representing Oonopidae, Dysderidae
and Orsolobidae (Fig. 2). Within this clade the majority
of the Oonopidae genera were recovered as a monophy-
letic group but with weak support (MAFFT: 0.72 PP,
Structural: 0.63 PP), Dysderidae monophyly was robustly
supported (PP=1) while in contrast the orsolobids (Orso-
lobus Simon, 1893 and Duripelta Forster, 1956) were not
monophyletic and varied in their phylogenetic position
depending on the type of alignment and the analysis type.
The latter was also observed for a small set of soft-bodied
oonopid genera (Birabenella, Heteroonops and Oono-
poides) and the genus Stenoonops Simon, 1891. More
precisely, the BI based on the structural 78S alignment
taking into account the secondary structure reconstructs
a tree in which the genera Birabenella, Heteroonops and
Oonopoides are monophyletic (0.97 PP) and placed as
a sister clade of Orsolobus pucara Forster & Platnick,
1985 although with very weak support (0.54 PP, Fig. 2).
The BI based on the MAFFT /8S alignment placed He-
teroonops and Oonopoides within a well-supported clade
containing the majority of the Oonopidae (0.96 PP) while
Birabenella and Stenoonops were placed more as a sister
clade of Duripelta borealis (tree not shown). The phylo-
genetic position of Heteroonops and Oonopoides within
a well-supported clade containing the majority of the
Oonopidae is also recovered in the 28S phylogeny (EI.
Suppl. Fig. S1).

3.2.2. Intrafamilial relationships in Oonopidae

Almost all oonopid genera of which more than one
specimen was included in the analyses were recovered
consistently as monophyletic although five exceptions
are observed, i.e. specimens of the genera Silhouettella
Benoit, 1979, Opopaea Simon, 1891, Paradysderina,
Aschnaoonops and Unicorn. The genus Orchestina is
well represented in the /8S analysis by 16 specimens
sampled at different continental regions. Within this
genus two well-supported clades are observed. Within
the first clade two specimens sampled in Asia (Singa-
pore) form a distinct group separated from specimens
from Africa (Congo & Cameroon). The second clade
contains specimens sampled in Africa (Congo & South
Africa) and South America (Argentina, Chile & Ecua-
dor). Interestingly, O. pavesiiformis Saaristo, 2007 sam-
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Fig. 2. Phylogeny of Oonopidae and
related families based on the /8S se-
quence data. Majority rule consensus
Bayesian tree is shown. Squares at
nodes indicate per column the analy-
sis method (BI: Bayesian Inference,
ML: Maximum Likelihood, MP: Ma-
ximum Parsimony) and per line the
type of alignment (/88 structural, /8S
MAFEFT). Colours of squares repre-
sent bootstrap values as following:
strong support (black: BI > 0.95;
ML, MP > 0.70), moderate support
(grey: 0.75 <BI <0.95; 0.60 <ML <
0.70; 0.50 <MP < 0.70), weak sup-
port (white: 0.50 <BI <0.75; 0.50 <
MP, ML<0.60) and no support
(square with diagonal line).
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Orsolobus pucara 416 Chile
Duripelta borealis 145 New Zealand
Dysdera crocata 199 Portugal

Harpactea hombergi 303 France
Harpactea hombergi 86 Belgium

Segestria florentina 305 Argentina
Segestria IN689079.1 Spain
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pled in Argentina is more similar in its /8S sequence
to O. fannesi Henrard & Jocqué, 2012 stemming from
South Africa than to Orchestina specimens sampled in
South America. The genus Opopaea is also represented
by several specimens (7) stemming from different sam-
pling locations. Within Opopaea, specimens from Aus-
tralia (Queensland) form a well-supported group clearly
differentiated from the remaining specimens sampled
in Africa and the Galapagos that are, in contrast, very
similar in /8S sequences. /8S sequences from different
specimens of Triaeris Simon, 1891 sampled at different
locations show no variation.

A number of genus groups within the Oonopidae are
consistently resolved across genes and analysis types
(Figs. 2—4). Several of these genus groups are congru-
ent with currently defined morphological groups. More
precisely we found strong support for the monophyly
of the following groups: 1) all specimens of the Dysde-
rina-group, 2) the two Sulsulinae genera, 3) Opopaea
and Brignolia, 4) Cavisternum Baehr, Harvey & Smith,
2010 and Xyphinus Simon, 1893 and 5) Heteroonops
and Oonopoides across both genes. Based on /8S to-
pologies containing most taxa, we found strong support
for the monophyly of the following groups: 1) all speci-
mens belonging to the Zyngoonops-group and speci-
mens of Triaeris, 2) genera belonging to the Pelicinus-
group, 3) Lucetia Dumitrescu & Georgescu, 1983 and
Melchisedec Fannes, 2010 and 4) a clade including
Opopaea, Brignolia, Prethopalpus Baehr et al., 2012,
Cavisternum and Xyphinus. In contrast, specimens of
the Scaphiella-group were not recovered as monophyl-
etic but as two distinct monophyletic groups including
1) Niarchos Platnick & Dupérré, 2010 and Scaphios
Platnick & Dupérré, 2010 and 2) Escaphiella Platnick
& Dupérré, 2009 and Scaphiella Simon, 1891 respec-
tively. A clear distinction between armoured versus
soft-bodied Oonopidae was not recovered. However,
soft-bodied Oonopidae were placed more basal within
the Oonopidae.

3.2.3. Higher-level relationships

This study allows a preliminary insight in the phyloge-
netic relationships among families currently placed with-
in the superfamily of the Dysderoidea. Across all align-
ments, monophyly of Dysderoidea sensu GriswoLp et al.
(2012) is not recovered. However, we found strong sup-
port for the monophyly of a group containing Oonopidae,
Orsolobidae, Segestriidae and Dysderidae based on the
18S dataset (Fig. 2) and for a clade containing Oonopi-
dae, Orsolobidae and Dysderidae based on the 28S and
concatenated datasets (Fig. 3, El. Suppl. Fig. S1). The
monophyly of Dysderidae is supported across genes and
analysis types. In contrast, neither Segestriidae nor Orso-
lobidae were found to be monophyletic based on the cur-
rent data sets. Moreover, our phylogenies do not support
a placement of Trogloraptoridae within the Dysderoidea
(Figs. 2, 3, El. Suppl. Fig. S1).
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4. Discussion

4.1. Monophyly and internal phylogeny

of the Oonopidae

288 and combined /85-28S data support the hypothesis
that Oonopidae are monophyletic. Similarly, /8S weakly
supports a clade containing the majority of the oonopid
genera with exception of four genera. One of these gen-
era is the soft-bodied genus Birabenella which is consist-
ently placed outside the clade containing the majority of
the Oonopidae genera across the type of alignment used
in the BI. In contrast, the phylogenetic position of Het-
eroonops, Oonopoides and Stenoonops varies across the
type of alignment used in the BI. For Heteroonops and
Oonopoides a similar phylogenetic position in the 28S
phylogeny in comparison with the BI based on the /8§
MAFFT alignment was observed supporting the position
of both genera within a clade containing the majority of
the Oonopidae (El. Suppl. Fig. S1). Regrettably, no 28S
sequences were obtained for Birabenella and Stenoonops
excluding the comparison with the /8S results. However,
it is interesting to note that Birabenella’s phylogenetic
position is in agreement with its plesiomorphic traits
such as unipectinate claws and visible seminal ducts
(Grismapo 2010).

When Sivon (1890) established the family of the
Oonopidae, he classified the genera based upon the de-
gree of body sclerotisation into either armoured “lori-
cati”, with abdominal scuta, or soft-bodied “molles”
lacking scuta (SimoN 1890). Recent work states that the
soft-bodied oonopids almost certainly are not monophy-
letic (PLatnick & DuperrE 2010b; Pratnick et al. 2012),
while in contrast, PLATNICK et al. (2012) suggested that
armoured oonopids might constitute a monophyletic
group. Although both /8S and 28S topologies do not
support the monophyly of these informal morphological
groups, it is interesting to note that most soft-bodied gen-
era included in this study were placed more basal within
the Oonopidae. This phylogenetic pattern supports a low
degree of body sclerotisation as a plesiomorphic trait
while a higher degree of body sclerotisation seems a de-
rived trait among Oonopidae. Moreover, the 28S results
are in agreement with previous work that hypothesized
that Orchestina and the Sulsulinae are among the most
primitive oonopids (PLATNICK et al. 2012).

4.1.1. Orchestininae

Within this study the subfamilies Sulsulinae and Orches-
tininae are well supported. Interestingly, Afrotropical
Orchestina species are not recovered as a monophyletic
group. However, it should be noted that this is the first
analysis that includes Orchestina members of different
continents, something that was not tested in the phy-
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Fig. 3. Phylogeny of Oonopidae and
related families based on the concat-
enated 28S and /8S sequence data.
Majority rule consensus Bayesian tree
is shown. Squares at nodes indicate
the analysis method (BI: Bayesian
Inference, ML: Maximum Likeli-
hood, MP: Maximum Parsimony).
Colours of squares represent boot-
strap values as following: strong
support (black: BI>0.95; ML, MP >
0.70), moderate support (grey: 0.75 <
BI<0.95; 0.60 <ML <0.70; 0.50 <
MP <0.70), weak support (white:
0.50 <BI<0.75; 0.50<MP, ML <
0.60) and no support (square with di-
agonal line).

BI ML MP
oo

0.2 expected changes per site

logeny of HENRARD & JocqQuE (2012). Within a first clade,
Asian species studied here are placed together with Afro-
tropical species belonging to the macrofoliata-group as
defined by HENRARD & JocQUE (2012). Personal observa-
tions (HA) of these (undescribed) Asian species confirm
the presence of modified labial setae that are characteris-
tic for the macrofoliata-group (HENRARD & JocQuE 2012).
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Other known Asian species — e.g. Orchestina truncatula
(TonGg & L1 2011), O. justini (Saaristo 2001) — also ap-
pear to have these special setae on the labium as well
as other characters diagnostic of the marcofoliata-group.
Furthermore, the results remarkably support two sub-
groups within the macrofoliata-group (cf. “brown clade
and “orange clade”, see HENRARD & JocqQue 2012).
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Although the macrofoliata-group is not supported as an
exclusively African clade, the concept of the group by it-
self is still well supported by particular characters that are
not present in the South American members and by the
current results of the molecular data. The second clade
contains both South American species and Afrotropical
species. These species share the presence of a posterior
plate-shaped sclerite in the female genitalia (see BURGER
et al. 2010), a character that typifies to some species of
the probosciformis-group. However, the African group in
this clade, represented here only by O. fannesi and O.
saaristoi (members of the “green group” in HENRARD &
Jocqut 2012) is perhaps the more ambiguous of all, given
the low support obtained by HENRARD & JocQuE (2012)
and because it shares some of its own characters with
many other species of the world. This idea is supported
by the molecular analysis in which the South American
species seem to emerge as a related group of that Afri-
can clade. Interestingly, O. fannesi (known from South
Africa) appears to be more similar to O. pavesiiformis
(from Argentina, probably introduced from Europe, un-
published data) in /8S sequence variation than to O.
saaristoi. These results are in agreement with HENRARD
& JocquE (2012) who concluded that the position of O.
saaristoi within the clade containing O. fannesi and O.
lanceolata Henrard & Jocqué, 2012 was questionable. In
addition, O. fannesi and O. pavesiiformis (pers. obs. HA)
share the type of male palpal tibia that is less strongly
swollen than that of O. saaristoi as well as the two bris-
tles emerging from a tubular projection near the anterior
margin of the labium (HeEnrARD & JocQui 2012). The
SEM illustrations of Saaristo & Marusik (2004), cor-
roborated by own observations (HA), show similar struc-
tures for O. pavesii that are clearly absent in O. saaristoi.
In conclusion, this group of species seems to be more
heterogeneous than those from macrofoliata, with some
widespread characters that seem to be not exclusive of
a particular fauna. In contrast, the macrofoliata-group
seems to be a more homogeneous group that shares sev-
eral conspicuous morphological characters restricted to
some species from Africa and South Asia. However, fu-
ture studies on the genus Orchestina from other regions
(e.g. Europe, Australia) should test this hypothesis.

4.1.2. The Dysderina-group

The monophyly of the Dysderina-group is corroborated,
and Neoxyphinus Birabén, 1953 is recovered as sister to
a clade with all other taxa in the Dysderina-group. The
other genera are divided in two clades, one comprising
Paradysderina and Scaphidysderina Platnick & Du-
pérré, 2011, the other comprising Dysderina and its al-
lies (Aschnaoonops, Bidysderina Platnick et al., 2013,
Tridysderina Platnick, Berniker & Bonaldo, 2013, and
Tinadysderina Platnick, Berniker & Bonaldo, 2013; Figs.
2, 3). The close relationship between Paradysderina and
Scaphidysderina is not surprising. These genera share an
unusual instance of sexual dimorphism: in males the dor-
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sal abdominal scutum is large, but in females it is greatly
reduced or absent (PLaTNICK & DupERRE 2011a,b; the ge-
nus Semidysderina Platnick & Dupérré, 2011, not includ-
ed in this study, shows a similar sexual dimophism). In
our analysis, Paradysderina is paraphyletic with respect
to Scaphidysderina, suggesting that these generic names
may be synonyms. However, more extensive phyloge-
netic studies are needed before any firm conclusion can
be drawn. In most Paradysderina and Scaphidysderina
species, the females lack any trace of a dorsal scutum.
However, females of P fusiscuta Platnick & Dupérré,
2011 and S. scutata Platnick & Dupérré, 2011 appear to
have a small dorsal scutum at the anterior part of the ab-
domen (Pratnick & DuPERRE 2011a,b). Interestingly, our
study casts doubt on the monophyly of Aschnaoonops.
This genus contains 40 species and is widely distributed
in northern South America and the West Indies (PLATNICK
et al. 2013). The present analysis includes only three spe-
cies of Aschnaoonops, all from Ecuador, but even this
small, geographically restricted sample is not recovered
as monophyletic (Fig. 2). On the basis of similarities in
male genital morphology, Pratnick et al. (2013) have
suggested that Bidysderina is more closely related to
Dysderina than to Aschnaoonops. However, in the pre-
sent analysis, B. perdido is closer to A. cosanga than to
D. tiputini (Figs. 2, 3).

4.1.3. The Zyngoonops-, Pelicinus-, Scaphiella-,
and Stenoonops-groups

The Zyngoonops-group is strongly supported in both the
18S and concatenated analyses, not surprising, given that
there is considerable morphological evidence for mono-
phyly (Fanngs 2013). The monophyly of the Pelicinus-
group is supported by the /8S data, but in the concat-
enated analysis the genera Pelicinus and Silhouettella are
not placed as sister taxa (Fig. 3). Our current data provide
little support for the Scaphiella-group. The proposed
sister relationship between Scaphiella and Escaphiella
(Prarnick & Duperr 2009a) is confirmed, as is the sister
relationship between Niarchos and Scaphios (PLATNICK &
Duperre 2010a), but the four genera are not recovered as
a clade (Fig. 2). Future inclusion of the remaining gen-
era (Pescennina and Simlops) may improve the support
for the Scaphiella-group. The Stenoonops-group is re-
presented in this study by Stenoonops and Australoonops
which were not recovered as sister taxa (Fig. 2). PLaTNICK
& DupErrE (2010b) hypothesized a close relationship be-
tween these genera, but as only a few species could be
examined by scanning electron microscopy, they cau-
tioned that ‘this hypothesis remains poorly tested’.

4.1.4. The Opopaea-group
The genus Opopaea is one of the most species rich and

widely distributed oonopid genera (PLATNICK & DUPERRE
2009b). Males of Opopaea have a greatly enlarged pal-
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Fig. 4. Summary phylogeny of Oono-
pidae highlighting congruence among
morphological group annotations, se-
quence data and inferences. Topology
is based on majority rule Bayesian
consensus tree of /8S-RNA struc-
tural alignment. Squares at nodes
indicate per column the data parti-
tion (/8§ structural, 78S MAFFT,
288, 185-28S alignment) and per line
the analysis method (BI: Bayesian
Inference, ML: Maximum Likeli-
hood, MP: Maximum Parsimony).
Black squares indicate that the clade
was recovered in the majority rule
consensus tree of the given analy-
sis, white squares indicate that the
clade was not recovered and squares
with diagonal line indicate that the
clade was not tested due to missing
sequence data for one or fewer taxa
from the clade. Taxa with diamonds
are classified as soft-bodied Oonopi-
dae. WFAA refers to the undescribed
genera belonging to the Zyngoonops-
group.
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pal patella that originates subbasally or medially from the
femur (Pratnick & DupPERRE 2009b; BAEHR 2011; BAE-
HR et al. 2013). Males of Prethopalpus, Malagiella and
Camptoscaphiella (the latter two are not included in this
study) share this feature with Opopaea. Females of Opo-
paea can be morphologically confused with members of
the genera Brignolia. Hence, it is not surprising that both
18S and 28S topologies recovered a strong monophyl-
etic support for Opopaea and Brignolia and that a well-
supported clade consisting of Brignolia, Opopaea, and
Prethopalpus was recovered in the /8S phylogeny.

4.2. Dysderoidea

Our dataset allows us to obtain preliminary insights into
the higher-level phylogenetic relationships within the su-
perfamily of the Dysderoidea consisting of the Oonopi-
dae, Orsolobidae, Segestriidae and Dysderidae. The re-
cently described family Trogloraptoridae has been sug-
gested to be a member of the Dysderoidea (GriswoLD et
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al. 2012). Nevertheless although our results should be in-
terpreted with caution given the relatively modest taxon
sampling, our sequence data do not support a placement
of Trogloraptoridae within the Dysderoidea as proposed
by GriswoLp et al. (2012). In contrast we found good
support for the grouping of the Oonopidae, Orsolobidae,
Segestriidae and Dysderidae thus excluding Troglorap-
toridae from this natural group.

5. Conclusion

This study reports the first sequence data and most
comprehensive phylogeny including a wide array of
oonopid genera in combination with representatives of
the superfamily Dysderoidea. At present we suggest that
the majority of the oonopid genera constitute a natural
group and we highlight the need for future inclusion of
remaining genera before drawing firm conclusions on the
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monophyly of this family. We found good support for
the two subfamilies Orchestininae and Sulsulinae and
several morphologically defined groups such as the Dys-
derina- and Zyngoonops-groups. In contrast, the Pelici-
nus-, Stenoonops- and Scaphiella-groups were not sup-
ported although future inclusion of the remaining genera
of these groups might improve our understanding. We
suggest that a low degree of body sclerotisation might
be considered as a plesiomorphic trait and corroborate
that soft-bodied Oonopidae such as Orchestina and Sul-
sulinae are relatively primitive oonopids. Additionally,
the obtained phylogenies do not support a placement of
the Trogloraptoridae within the superfamily of the Dys-
deroidea.
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